
7.7  Array Lists   343

Multidimensional Arrays

You can declare arrays with more than two dimensions. For example, here is a three-
dimensional array:

int[][][] rubiksCube = new int[3][3][3];

Each array element is specified by three index values:

rubiksCube[i][j][k]

7.7  Array Lists
When you write a program that collects inputs, you
don’t always know how many inputs you will have.
In such a situation, an array list offers two significant
advantages:

•	 Array lists can grow and shrink as needed.
•	 The ArrayList class supplies methods for common

tasks, such as inserting and removing elements.

In the following sections, you will learn how to work
with array lists.

An array list expands to hold as many elements as needed.

Special Topic 7.4

© Eric Isselé/iStockphoto.

© digital94086/iStockphoto.

An array list stores
a sequence of
values whose
size can change.

Syntax 7.4	 Array Lists

ArrayList<String> friends = new ArrayList<String>();

The index must be � 0 and < friends.size().

An array list object of size 0

Use the
get and set methods
to access an element.

friends.add("Cindy");
String name = friends.get(i);
friends.set(i, "Harry");

Variable type Variable name

The add method
appends an element to the array list,

increasing its size.

To construct an array list: new ArrayList<typeName>()

To access an element: arraylistReference.get(index)
 arraylistReference.set(index, value)

Syntax

©
 d

ig
it

al
94

08
6/

iS
to

ck
ph

ot
o.

344  Chapter 7  Arrays and Array Lists

7.7.1  Declaring and Using Array Lists

The following statement declares an array list of strings:
ArrayList<String> names = new ArrayList<String>();

The ArrayList class is contained in the java.util package. In order to use array lists in
your program, you need to use the statement import java.util.ArrayList.

The type ArrayList<String> denotes an array list of String elements. The angle
brackets around the String type tell you that String is a type parameter. You can
replace String with any other class and get a different array list type. For that reason,
ArrayList is called a generic class. However, you cannot use primitive types as type
parameters—there is no ArrayList<int> or ArrayList<double>. Section 7.7.4 shows how
you can collect numbers in an array list.

It is a common error to forget the initialization:
ArrayList<String> names;
names.add("Harry"); // Error—names not initialized

Here is the proper initialization:
ArrayList<String> names = new ArrayList<String>();

Note the () after new ArrayList<String> on the right-hand side of the initialization. It
indicates that the constructor of the ArrayList<String> class is being called.

When the ArrayList<String> is first constructed, it has size 0. You use the add method
to add an element to the end of the array list.

names.add("Emily"); // Now names has size 1 and element "Emily"
names.add("Bob"); // Now names has size 2 and elements "Emily", "Bob"
names.add("Cindy"); // names has size 3 and elements "Emily", "Bob", and "Cindy"

The size increases after each call to add (see Figure 17). The size method yields the
current size of the array list.

To obtain an array list element, use the get method, not the [] operator. As with
arrays, index values start at 0. For example, names.get(2) retrieves the name with index
2, the third element in the array list:

String name = names.get(2);

As with arrays, it is an error to access a nonexistent element. A very common bounds
error is to use the following:

int i = names.size();
name = names.get(i); // Error

The last valid index is names.size() - 1.
To set an array list element to a new value, use the set method:
names.set(2, "Carolyn");

The ArrayList class
is a generic class:
ArrayList<Type>
collects elements of
the specified type.

Use the size method
to obtain the current
size of an array list.

Use the get and set
methods to access an
array list element at a
given index.

Figure 17  Adding an Array List Element with add

1 Before add 2 After add

2

ArrayList<String>

names =

"Bob"
"Emily"

3

Size increased

New element
added at end

ArrayList<String>

names =

"Cindy"
"Bob"

"Emily"

7.7  Array Lists   345

Figure 18 
Adding and
Removing
Elements in the
Middle of an
Array List

1 Before add
ArrayList<String>names =

"Carolyn"
"Bob"

"Emily"

2 After names.add(1, "Ann")
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily"
"Ann" Moved from index 1 to 2

New element
added at index 1

Moved from index 2 to 3

3 After names.remove(1)
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily" Moved from index 2 to 1

Moved from index 3 to 2

This call sets position 2 of the names array list to "Carolyn", overwriting whatever value
was there before.

The set method overwrites existing values. It is different from the add method,
which adds a new element to the array list.

You can insert an element in the middle of an array list. For example, the call
names.add(1, "Ann") adds a new element at position 1 and moves all elements with
index 1 or larger by one position. After each call to the add method, the size of the
array list increases by 1 (see Figure 18).

 Conversely, the remove method removes the element at a given position, moves all
elements after the removed element down by one position, and reduces the size of the
array list by 1. Part 3 of Figure 18 illustrates the result of names.remove(1).

With an array list, it is very easy to get a quick printout. Simply pass the array list
to the println method:

System.out.println(names); // Prints [Emily, Bob, Carolyn]

7.7.2  Using the Enhanced for Loop with Array Lists

You can use the enhanced for loop to visit all elements of an array list. For example,
the following loop prints all names:

ArrayList<String> names = . . . ;
for (String name : names)
{
 System.out.println(name);
}

This loop is equivalent to the following basic for loop:
for (int i = 0; i < names.size(); i++)
{

© Danijelm/iStockphoto.
An array list has
methods for adding
and removing ele­
ments in the middle.

Use the add and
remove methods to
add and remove
array list elements.

©
 D

an
ije

lm
/iS

to
ck

ph
ot

o.

346  Chapter 7  Arrays and Array Lists

 String name = names.get(i);
 System.out.println(name);
}

7.7.3  Copying Array Lists

As with arrays, you need to remember that array list variables hold references. Copy-
ing the reference yields two references to the same array list (see Figure 19).

ArrayList<String> friends = names;
friends.add("Harry");

Now both names and friends reference the same array list to which the string "Harry"
was added.

If you want to make a copy of an array list, construct the copy and pass the original
list into the constructor:

ArrayList<String> newNames = new ArrayList<String>(names);

Table 2 Working with Array Lists

ArrayList<String> names = new ArrayList<String>(); Constructs an empty array list that can hold strings.

names.add("Ann");
names.add("Cindy");

Adds elements to the end of the array list.

System.out.println(names); Prints [Ann, Cindy].

names.add(1, "Bob"); Inserts an element at index 1. names is now
[Ann, Bob, Cindy].

names.remove(0); Removes the element at index 0. names is now
[Bob, Cindy].

names.set(0, "Bill"); Replaces an element with a different value. names is
now [Bill, Cindy].

String name = names.get(i); Gets an element.

String last = names.get(names.size() - 1); Gets the last element.

ArrayList<Integer> squares = new ArrayList<Integer>();
for (int i = 0; i < 10; i++)
{
 squares.add(i * i);
}

Constructs an array list holding the first ten
squares.

Figure 19 
Copying an Array List
Reference

ArrayList<String>

"Emily"
"Bob"

"Carolyn"
"Harry"

names =

friends =

7.7  Array Lists   347

7.7.4  Wrappers and Auto-boxing

In Java, you cannot directly insert primitive type values—numbers, characters, or
boolean values—into array lists. For example, you cannot form an ArrayList<double>.
Instead, you must use one of the wrapper classes shown in the following table.

Primitive Type Wrapper Class

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

For example, to collect double values in an array list, you use an ArrayList<Double>.
Note that the wrapper class names start with uppercase letters, and that two of them
differ from the names of the corresponding primitive type: Integer and Character.

Conversion between primitive types and the corresponding wrapper classes is
automatic. This process is called auto-boxing (even though auto-wrapping would
have been more consistent).

For example, if you assign a double value to a Double variable, the number is auto-
matically “put into a box” (see Figure 20).

 Double wrapper = 29.95;

Conversely, wrapper values are automatically “unboxed” to primitive types:
double x = wrapper;

Because boxing and unboxing is automatic, you don’t need to think about it. Simply
remember to use the wrapper type when you declare array lists of numbers. From
then on, use the primitive type and rely on auto-boxing.

ArrayList<Double> values = new ArrayList<Double>();
values.add(29.95);
double x = values.get(0);

© sandoclr/iStockphoto.Like truffles that
must be in a wrapper
to be sold, a number
must be placed in a
wrapper to be stored
in an array list.

To collect numbers in
array lists, you must
use wrapper classes.

Figure 20  A Wrapper Class Variable

wrapper =

value =

Double

29.95

©
 s

an
do

cl
r/

iS
to

ck
ph

ot
o.

348  Chapter 7  Arrays and Array Lists

7.7.5  Using Array Algorithms with Array Lists

The array algorithms in Section 7.3 can be converted to array lists simply by using the
array list methods instead of the array syntax (see Table 3 on page 350). For example,
this code snippet finds the largest element in an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

Here is the same algorithm, now using an array list:
double largest = values.get(0);
for (int i = 1; i < values.size(); i++)
{
 if (values.get(i) > largest)
 {
 largest = values.get(i);
 }
}

7.7.6  Storing Input Values in an Array List

When you collect an unknown number of inputs, array lists are much easier to use
than arrays. Simply read inputs and add them to an array list:

ArrayList<Double> inputs = new ArrayList<Double>();
while (in.hasNextDouble())
{
 inputs.add(in.nextDouble());
}

7.7.7  Removing Matches

It is easy to remove elements from an array list, by calling the remove method. A com-
mon processing task is to remove all elements that match a particular condition. Sup-
pose, for example, that we want to remove all strings of length < 4 from an array list.

Of course, you traverse the array list and look for matching elements:
ArrayList<String> words = . . .;
for (int i = 0; i < words.size(); i++)
{
 String word = words.get(i);
 if (word.length() < 4)
 {
 Remove the element at index i.
 }
}

But there is a subtle problem. After you remove the element, the for loop increments
i, skipping past the next element.

7.7  Array Lists   349

Consider this concrete example, where words contains the strings "Welcome", "to",
"the", "island!". When i is 1, we remove the word "to" at index 1. Then i is incre-
mented to 2, and the word "the", which is now at position 1, is never examined.

 i words
 0 "Welcome", "to", "the", "island"
 1 "Welcome", "the", "island"
 2

We should not increment the index when removing a word. The appropriate
pseudocode is

If the element at index i matches the condition
	 Remove the element.
Else
	 Increment i.

Because we don’t always increment the index, a for loop is not appropriate for this
algorithm. Instead, use a while loop:

int i = 0;
while (i < words.size())
{
 String word = words.get(i);
 if (word.length() < 4)
 {
 words.remove(i);
 }
 else
 {
 i++;
 }
}

7.7.8  Choosing Between Array Lists and Arrays

For most programming tasks, array lists are easier to use than arrays. Array lists can
grow and shrink. On the other hand, arrays have a nicer syntax for element access and
initialization.

Which of the two should you choose? Here are some recommendations.

•	 If the size of a collection never changes, use an array.
•	 If you collect a long sequence of primitive type values and you are concerned

about efficiency, use an array.
•	 Otherwise, use an array list.

The following program shows how to mark the largest value in a sequence of values
stored in an array list. Note how the program is an improvement over the array ver-
sion on page 325. This program can process input sequences of arbitrary length.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a version of the
Student class that
uses an array list.

© Alex Slobodkin/iStockphoto.

350  Chapter 7  Arrays and Array Lists

Table 3 Comparing Array and Array List Operations

Operation Arrays Array Lists

Get an element. x = values[4]; x = values.get(4);

Replace an element. values[4] = 35; values.set(4, 35);

Number of elements. values.length values.size()

Number of filled elements. currentSize (companion
variable, see Section 7.1.4)

values.size()

Remove an element. See Section 7.3.6. values.remove(4);

Add an element, growing
the collection.

See Section 7.3.7. values.add(35);

Initializing a collection. int[] values = { 1, 4, 9 }; No initializer list syntax;
call add three times.

section_7/LargestInArrayList.java

1 import java.util.ArrayList;
2 import java.util.Scanner;
3
4 /**
5 This program reads a sequence of values and prints them, marking the largest value.
6 */
7 public class LargestInArrayList
8 {
9 public static void main(String[] args)

10 {
11 ArrayList<Double> values = new ArrayList<Double>();
12
13 // Read inputs
14
15 System.out.println("Please enter values, Q to quit:");
16 Scanner in = new Scanner(System.in);
17 while (in.hasNextDouble())
18 {
19 values.add(in.nextDouble());
20 }
21
22 // Find the largest value
23
24 double largest = values.get(0);
25 for (int i = 1; i < values.size(); i++)
26 {
27 if (values.get(i) > largest)
28 {
29 largest = values.get(i);
30 }
31 }
32
33 // Print all values, marking the largest
34
35 for (double element : values)
36 {

7.7  Array Lists   351

37 System.out.print(element);
38 if (element == largest)
39 {
40 System.out.print(" <== largest value");
41 }
42 System.out.println();
43 }
44 }
45 }

Program Run

Please enter values, Q to quit:
35 80 115 44.5 Q
35
80
115 <== largest value
44.5

35.	 Declare an array list of integers called primes that contains the first five prime
numbers (2, 3, 5, 7, and 11).

36.	 Given the array list primes declared in Self Check 35, write a loop to print its ele-
ments in reverse order, starting with the last element.

37.	 What does the array list names contain after the following statements?
ArrayList<String> names = new ArrayList<String>;
names.add("Bob");
names.add(0, "Ann");
names.remove(1);
names.add("Cal");

38.	 What is wrong with this code snippet?
ArrayList<String> names;
names.add(Bob);

39.	 Consider this method that appends the elements of one array list to another:
public void append(ArrayList<String> target, ArrayList<String> source)
{
 for (int i = 0; i < source.size(); i++)
 {
 target.add(source.get(i));
 }
}

What are the contents of names1 and names2 after these statements?
ArrayList<String> names1 = new ArrayList<String>();
names1.add("Emily");
names1.add("Bob");
names1.add("Cindy");
ArrayList<String> names2 = new ArrayList<String>();
names2.add("Dave");
append(names1, names2);

40.	 Suppose you want to store the names of the weekdays. Should you use an array
list or an array of seven strings?

41.	 The ch07/section_7 directory of your source code contains an alternate imple-
mentation of the problem solution in How To 7.1 on page 330. Compare the
array and array list implementations. What is the primary advantage of the latter?

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

352  Chapter 7  Arrays and Array Lists	 Testing Track

Practice It	 Now you can try these exercises at the end of the chapter: R7.14, R7.33, E7.17, E7.20.

Length and Size

Unfortunately, the Java syntax for determining the
number of elements in an array, an array list, and a
string is not at all consistent. It is a common error
to confuse these. You just have to remember the
correct syntax for every data type.

The Diamond Syntax

There is a convenient syntax enhancement for declaring array lists and other generic classes. In
a statement that declares and constructs an array list, you need not repeat the type parameter in
the constructor. That is, you can write

ArrayList<String> names = new ArrayList<>();

instead of

ArrayList<String> names = new ArrayList<String>();

This shortcut is called the “diamond syntax” because the empty brackets <> look like a dia-
mond shape.

For now, we will use the explicit syntax and include the type parameters with constructors.
In later chapters, we will switch to the diamond syntax.

7.8  Regression Testing
It is a common and useful practice to make a new test whenever you find a program
bug. You can use that test to verify that your bug fix really works. Don’t throw the
test away; feed it to the next version after that and all subsequent versions. Such a col-
lection of test cases is called a test suite.

You will be surprised how often a bug that you fixed will reappear in a future ver-
sion. This is a phenomenon known as cycling. Sometimes you don’t quite understand
the reason for a bug and apply a quick fix that appears to work. Later, you apply a
different quick fix that solves a second problem but makes the first problem appear
again. Of course, it is always best to think through what really causes a bug and fix the
root cause instead of doing a sequence of  “Band-Aid” solutions. If you don’t succeed
in doing that, however, you at least want to have an honest appraisal of how well the
program works. By keeping all old test cases around and testing them against every
new version, you get that feedback. The process of checking each version of a pro-
gram against a test suite is called regression testing.

How do you organize a suite of tests? An easy technique is to produce multiple
tester classes, such as ScoreTester1, ScoreTester2, and so on, where each program runs
with a separate set of test data. For example, here is a tester for the Student class:

public class ScoreTester1
{

Common Error 7.4

© John Bell/iStockphoto.

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Special Topic 7.5

© Eric Isselé/iStockphoto.

A test suite is a
set of tests for
repeated testing.

Testing Track 7.8  Regression Testing   353

 public static void main(String[] args)
 {
 Student fred = new Student(100);
 fred.addScore(10);
 fred.addScore(20);
 fred.addScore(5);
 System.out.println("Final score: " + fred.finalScore());
 System.out.println("Expected: 30");
 }
}

Another useful approach is to provide a generic tester, and feed it inputs from mul-
tiple files, as in the following.

section_8/ScoreTester.java

1 import java.util.Scanner;
2
3 public class ScoreTester
4 {
5 public static void main(String[] args)
6 {
7 Scanner in = new Scanner(System.in);
8 double expected = in.nextDouble();
9 Student fred = new Student(100);

10 while (in.hasNextDouble())
11 {
12 if (!fred.addScore(in.nextDouble()))
13 {
14 System.out.println("Too many scores.");
15 return;
16 }
17 }
18 System.out.println("Final score: " + fred.finalScore());
19 System.out.println("Expected: " + expected);
20 }
21 }

The program reads the expected result and the scores. By running the program with
different inputs, we can test different scenarios.

Of course, it would be tedious to type in the input values by hand every time the
test is executed. It is much better to save the inputs in a file, such as the following:

section_8/input1.txt

30
10
20
5

When running the program from a shell window, one can link the input file to the
input of a program, as if all the characters in the file had actually been typed by a user.
Type the following command into a shell window:

java ScoreTester < input1.txt

The program is executed, but it no longer reads input from the keyboard. Instead, the
System.in object (and the Scanner that reads from System.in) gets the input from the file
input1.txt. We discussed this process, called input redirection, in Special Topic 6.2.

Regression testing
involves repeating
previously run
tests to ensure that
known failures of
prior versions do
not appear in
new versions of
the software.

354  Chapter 7  Arrays and Array Lists	 Testing Track

The output is still displayed in the console window:

Program Run

Final score: 30
Expected: 30

You can also redirect output. To capture the program’s output in a file, use the
command

java ScoreTester < input1.txt > output1.txt

This is useful for archiving test cases.

42.	 Suppose you modified the code for a method. Why do you want to repeat tests
that already passed with the previous version of the code?

43.	 Suppose a customer of your program finds an error. What action should you
take beyond fixing the error?

44.	 Why doesn’t the ScoreTester program contain prompts for the inputs?

Practice It	 Now you can try these exercises at the end of the chapter: R7.35, R7.36.

Batch Files and Shell Scripts

If you need to perform the same tasks repeatedly on the command line, then it is worth learn-
ing about the automation features offered by your operating system.

Under Windows, you use batch files to execute a number of commands automatically. For
example, suppose you need to test a program by running three testers:

java ScoreTester1
java ScoreTester < input1.txt
java ScoreTester < input2.txt

Then you find a bug, fix it, and run the tests again. Now you need to type the three commands
once more. There has to be a better way. Under Windows, put the commands in a text file and
call it test.bat:

File test.bat

1 java ScoreTester1
2 java ScoreTester < input1.txt
3 java ScoreTester < input2.txt

Then you just type

test.bat

and the three commands in the batch file execute automatically.
Batch files are a feature of the operating system, not of Java. On Linux, Mac OS, and UNIX,

shell scripts are used for the same purpose. In this simple example, you can execute the com-
mands by typing

sh test.bat

There are many uses for batch files and shell scripts, and it is well worth it to learn more about
their advanced features, such as parameters and loops.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Programming Tip 7.3

© Eric Isselé/iStockphoto.

Testing Track 	 Chapter Summary  355

Computing & Society 7.2  The Therac-25 Incidents

Use arrays for collecting values.

•	 An array collects a sequence of values of the same type.
•	 Individual elements in an array are accessed by an integer index i, using the

notation array[i].
•	 An array element can be used like any variable.
•	 An array index must be at least zero and less than the size of the array.

The Therac-25 is a
computerized device

to deliver radiation treatment to cancer
patients (see the figure). Between June
1985 and January 1987, several of
these machines delivered serious over-
doses to at least six patients, killing
some of them and seriously maiming
the others.

The machines were controlled by
a computer program. Bugs in the pro-
gram were directly responsible for
the overdoses. According to Leveson
and Turner (“An Investigation of the
Therac-25 Accidents,” IEEE Computer,
July 1993, pp. 18–41), the program
was written by a single programmer,
who had since left the manufacturing
company producing the device and
could not be located. None of the com-
pany employees interviewed could say
anything about the educational level or
qualifications of the programmer.

The investigation by the federal
Food and Drug Administration (FDA)
found that the program was poorly
documented and that there was neither
a specification document nor a formal
test plan. (This should make you think.
Do you have a formal test plan for your
programs?)

The overdoses were caused by the
amateurish design of the software
that had to control different devices
concurrently, namely the keyboard,
the display, the printer, and of course
the radiation device itself. Synchroni-
zation and data sharing between the
tasks were done in an ad hoc way, even
though safe multitasking techniques
were known at the time. Had the pro-
grammer enjoyed a formal education
that involved these techniques, or

taken the effort to study the literature,
a safer machine could have been built.
Such a machine would have probably
involved a commercial multitasking
system, which might have required a
more expensive computer.

The same flaws were present in
the software controlling the prede-
cessor model, the Therac-20, but that
machine had hardware interlocks that
mechanically prevented overdoses.
The hardware safety devices were
removed in the Therac-25 and replaced
by checks in the software, presumably
to save cost.

Frank Houston of the FDA wrote in
1985, “A significant amount of software

for life-critical systems comes from
small firms, especially in the medical
device industry; firms that fit the pro-
file of those resistant to or uninformed
of the principles of either system safety
or software engineering.”

Who is to blame? The programmer?
The manager who not only failed to
ensure that the programmer was up to
the task but also didn’t insist on com-
prehensive testing? The hospitals that
installed the device, or the FDA, for not
reviewing the design process? Unfor-
tunately, even today there are no firm
standards for what constitutes a safe
software design process.

© Media Bakery.

Therac-25 unit

Treatment table

Motion
power switch

Therapy room
intercom

Room
emergency
switch

Door
interlock
switch

Beam
on/off light

Motion enable
switch (footswitch)

Display
terminal

TV monitor Printer
Control
console

Turntable
position
monitor

Room
emergency
switchesTV

camera

Typical Therac-25 Facility

C H A P T E R S U M M A R Y

© Luckie8/iStockphoto.

356  Chapter 7  Arrays and Array Lists

•	 A bounds error, which occurs if you supply an invalid array index, can cause your
program to terminate.

•	 Use the expression array.length to find the number of elements in an array.
•	 An array reference specifies the location of an array. Copying the reference yields

a second reference to the same array.
•	 Arrays can occur as method arguments and return values.
•	 With a partially filled array, keep a companion variable for the current size.
•	 Avoid parallel arrays by changing them into arrays of objects.

Know when to use the enhanced for loop.

•	 You can use the enhanced for loop to visit all elements of an array.
•	 Use the enhanced for loop if you do not need the index values in the loop body.

Know and use common array algorithms.

•	 When separating elements, don’t place a separator before the first element.
•	 A linear search inspects elements in sequence until a match is found.
•	 Before inserting an element, move elements to the end of the array starting with

the last one.

•	 Use a temporary variable when swapping two elements.
•	 Use the Arrays.copyOf method to copy the elements of an array into a new array.

Combine and adapt algorithms for solving a programming problem.

•	 By combining fundamental algorithms, you can solve complex
programming tasks.

•	 You should be familiar with the implementation of fundamental algorithms so
that you can adapt them.

Discover algorithms by manipulating physical objects.

•	 Use a sequence of coins, playing cards, or toys to visualize an array of values.
•	 You can use paper clips as position markers or counters.

Use two-dimensional arrays for data that is arranged in rows and columns.

•	 Use a two-dimensional array to store tabular data.
•	 Individual elements in a two-dimensional array are accessed by using two index

values, array[i][j].

Use array lists for managing collections whose size can change.

•	 An array list stores a sequence of values whose size can change.
•	 The ArrayList class is a generic class: ArrayList<Type> collects

elements of the specified type.
•	 Use the size method to obtain the current size of an array list.

© AlterYourReality/iStockphoto.

© yekorzh/iStockphoto.

© JenCon/iStockphoto.

© Trub/iStockphoto.

© digital94086/iStockphoto.

Review Exercises  357

•	 Use the get and set methods to access an array list element at a given index.
•	 Use the add and remove methods to add and remove array list elements.
•	 To collect numbers in array lists, you must use wrapper classes.

Describe the process of regression testing.

•	 A test suite is a set of tests for repeated testing.
•	 Regression testing involves repeating previously run tests to ensure that known

failures of prior versions do not appear in new versions of the software.

•• R7.1	 Carry out the following tasks with an array:
a.	Allocate an array a of ten integers.
b.	Put the number 17 as the initial element of the array.
c.	Put the number 29 as the last element of the array.
d.	Fill the remaining elements with –1.
e.	Add 1 to each element of the array.
f.	 Print all elements of the array, one per line.
g.	Print all elements of the array in a single line, separated by commas.

• R7.2	 What is an index of an array? What are the legal index values? What is a
bounds error?

• R7.3	 Write a program that contains a bounds error. Run the program. What happens on
your computer?

• R7.4	 Write a loop that reads ten numbers and a second loop that displays them in the
opposite order from which they were entered.

•• R7.5	 Write code that fills an array values with each set of numbers below.
a.	1	 2	 3	 4	 5	 6	 7	 8	 9	 10
b.	0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20
c.	1	 4	 9	 16	 25	 36	 49	 64	 81	 100
d.	0	 0	 0	 0	 0	 0	 0	 0	 0	 0
e.	1	 4	 9	 16	 9	 7	 4	 9	 11	
f.	 0	 1	 0 	 1 	 0 	 1 	 0 	 1 	 0 	 1
g.	0 	 1 	 2 	 3 	 4 	 0 	 1 	 2 	 3 	 4

© sandoclr/iStockphoto.

© Danijelm/iStockphoto.

java.lang.Boolean
java.lang.Double
java.lang.Integer
java.util.Arrays
 copyOf
 toString

java.util.ArrayList<E>
 add
 get
 remove
 set
 size

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

R E V I E W E X E R C I S E S

358  Chapter 7  Arrays and Array Lists

•• R7.6	 Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What is the value of total after the following loops complete?
a.	int total = 0;

for (int i = 0; i < 10; i++) { total = total + a[i]; }

b.	int total = 0;
for (int i = 0; i < 10; i = i + 2) { total = total + a[i]; }

c.	int total = 0;
for (int i = 1; i < 10; i = i + 2) { total = total + a[i]; }

d.	int total = 0;
for (int i = 2; i <= 10; i++) { total = total + a[i]; }

e.	int total = 0;
for (int i = 1; i < 10; i = 2 * i) { total = total + a[i]; }

f.	 int total = 0;
for (int i = 9; i >= 0; i--) { total = total + a[i]; }

g.	int total = 0;
for (int i = 9; i >= 0; i = i - 2) { total = total + a[i]; }

h.	int total = 0;
for (int i = 0; i < 10; i++) { total = a[i] - total; }

•• R7.7	 Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What are the contents of the array a after the following loops complete?
a.	for (int i = 1; i < 10; i++) { a[i] = a[i - 1]; }
b.	for (int i = 9; i > 0; i--) { a[i] = a[i - 1]; }
c.	for (int i = 0; i < 9; i++) { a[i] = a[i + 1]; }
d.	for (int i = 8; i >= 0; i--) { a[i] = a[i + 1]; }
e.	for (int i = 1; i < 10; i++) { a[i] = a[i] + a[i - 1]; }
f.	 for (int i = 1; i < 10; i = i + 2) { a[i] = 0; }
g.	for (int i = 0; i < 5; i++) { a[i + 5] = a[i]; }
h.	for (int i = 1; i < 5; i++) { a[i] = a[9 - i]; }

••• R7.8	 Write a loop that fills an array values with ten random numbers between 1 and 100.
Write code for two nested loops that fill values with ten different random numbers
between 1 and 100.

•• R7.9	 Write Java code for a loop that simultaneously computes both the maximum and
minimum of an array.

• R7.10	 What is wrong with each of the following code segments?
a.	int[] values = new int[10];

for (int i = 1; i <= 10; i++)
{
 values[i] = i * i;
}

b.	int[] values;
for (int i = 0; i < values.length; i++)
{
 values[i] = i * i;
}

Review Exercises  359

•• R7.11	 Write enhanced for loops for the following tasks.
a.	Printing all elements of an array in a single row, separated by spaces.
b.	Computing the maximum of all elements in an array.
c.	Counting how many elements in an array are negative.

•• R7.12	 Rewrite the following loops without using the enhanced for loop construct. Here,
values is an array of floating-point numbers.

a.	for (double x : values) { total = total + x; }
b.	for (double x : values) { if (x == target) { return true; } }
c.	int i = 0;

for (double x : values) { values[i] = 2 * x; i++; }

•• R7.13	 Rewrite the following loops using the enhanced for loop construct. Here, values is an
array of floating-point numbers.

a.	for (int i = 0; i < values.length; i++) { total = total + values[i]; }
b.	for (int i = 1; i < values.length; i++) { total = total + values[i]; }
c.	for (int i = 0; i < values.length; i++)

{
 if (values[i] == target) { return i; }
}

• R7.14	 What is wrong with each of the following code segments?
a.	ArrayList<int> values = new ArrayList<int>();
b.	ArrayList<Integer> values = new ArrayList();
c.	ArrayList<Integer> values = new ArrayList<Integer>;
d.	ArrayList<Integer> values = new ArrayList<Integer>();

for (int i = 1; i <= 10; i++)
{
 values.set(i - 1, i * i);
}

e.	ArrayList<Integer> values;
for (int i = 1; i <= 10; i++)
{
 values.add(i * i);
}

•• R7.15	 For the operations on partially filled arrays below, provide the header of a method.
Do not implement the methods.

a.	Sort the elements in decreasing order.
b.	Print all elements, separated by a given string.
c.	Count how many elements are less than a given value.
d.	Remove all elements that are less than a given value.
e.	Place all elements that are less than a given value in another array.

• R7.16	 Trace the flow of the loop in Section 7.3.4 with the given example. Show two col
umns, one with the value of i and one with the output.

• R7.17	 Consider the following loop for collecting all elements that match a condition; in
this case, that the element is larger than 100.

ArrayList<Double> matches = new ArrayList<Double>();
for (double element : values)
{

360  Chapter 7  Arrays and Array Lists

 if (element > 100)
 {
 matches.add(element);
 }
}

Trace the flow of the loop, where values contains the elements 110 90 100 120 80.
Show two columns, for element and matches.

• R7.18	 Trace the flow of the loop in Section 7.3.5, where values contains the elements 80
90 100 120 110. Show two columns, for pos and found. Repeat the trace when values
contains the elements 80 90 120 70.

•• R7.19	 Trace the algorithm for removing an element described in Section 7.3.6. Use an array
values with elements 110 90 100 120 80, and remove the element at index 2.

•• R7.20	 Give pseudocode for an algorithm that rotates the elements of
an array by one position, moving the initial element to the end
of the array, as shown at right.

•• R7.21	 Give pseudocode for an algorithm that removes all negative
values from an array, preserving the order of the remaining elements.

•• R7.22	 Suppose values is a sorted array of integers. Give pseudocode that describes how a
new value can be inserted so that the resulting array stays sorted.

••• R7.23	 A run is a sequence of adjacent repeated values. Give pseudocode for computing the
length of the longest run in an array. For example, the longest run in the array with
elements

1 2 5 5 3 1 2 4 3 2 2 2 2 3 6 5 5 6 3 1

has length 4.

••• R7.24	 What is wrong with the following method that aims to fill an array with random
numbers?

public void makeCombination(int[] values, int n)
{
 Random generator = new Random();
 int[] numbers = new int[values.length];
 for (int i = 0; i < numbers.length; i++)
 {
 numbers[i] = generator.nextInt(n);
 }
 values = numbers;
}

•• R7.25	 You are given two arrays denoting x- and y-coordinates of a set
of points in a plane. For plotting the point set, we need to know
the x- and y-coordinates of the smallest rectangle containing the
points. How can you obtain these values from the fundamental
algorithms in Section 7.3?

• R7.26	 Solve the quiz score problem described in Section 7.4 by sorting the array first. How
do you need to modify the algorithm for computing the total?

•• R7.27	 Solve the task described in Section 7.5 using an algorithm that removes and inserts
elements instead of switching them. Write the pseudocode for the algorithm, assum-
ing that methods for removal and insertion exist. Act out the algorithm with a

3 5 7 11 13 2

2 3 5 7 11 13

y

x

Review Exercises  361

sequence of coins and explain why it is less efficient than the swapping algorithm
developed in Section 7.5.

•• R7.28	 Develop an algorithm for finding the most frequently occurring value in an array of
numbers. Use a sequence of coins. Place paper clips below each coin that count how
many other coins of the same value are in the sequence. Give the pseudocode for an
algorithm that yields the correct answer, and describe how using the coins and paper
clips helped you find the algorithm.

•• R7.29	 Write Java statements for performing the following tasks with an array declared as

int[][] values = new int[ROWS][COLUMNS];

•	 Fill all entries with 0.
•	 Fill elements alternately with 0s and 1s in a checkerboard pattern.
•	 Fill only the elements in the top and bottom rows with zeroes.
•	 Compute the sum of all elements.
•	 Print the array in tabular form.

•• R7.30	 Write pseudocode for an algorithm that fills the first and last columns as well as the
first and last rows of a two-dimensional array of integers with –1.

• R7.31	 Section 7.7.7 shows that you must be careful about updating the index value when
you remove elements from an array list. Show how you can avoid this problem by
traversing the array list backwards.

•• R7.32	 True or false?
a.	All elements of an array are of the same type.
b.	Arrays cannot contain strings as elements.
c.	Two-dimensional arrays always have the same number of rows and columns.
d.	Elements of different columns in a two-dimensional array can have different

types.
e.	A method cannot return a two-dimensional array.
f.	 A method cannot change the length of an array argument.
g.	A method cannot change the number of columns of an argument that is a

two-dimensional array.

•• R7.33	 How do you perform the following tasks with array lists in Java?
a.	Test that two array lists contain the same elements in the same order.
b.	Copy one array list to another.
c.	Fill an array list with zeroes, overwriting all elements in it.
d.	Remove all elements from an array list.

• R7.34	 True or false?
a.	All elements of an array list are of the same type.
b.	Array list index values must be integers.
c.	Array lists cannot contain strings as elements.
d.	Array lists can change their size, getting larger or smaller.
e.	A method cannot return an array list.
f.	 A method cannot change the size of an array list argument.

362  Chapter 7  Arrays and Array Lists

• Testing R7.35	 Define the terms regression testing and test suite.

•• Testing R7.36	 What is the debugging phenomenon known as cycling? What can you do to avoid it?

•• E7.1	 Write a program that initializes an array with ten random integers and then prints
four lines of output, containing

•	 Every element at an even index.
•	 Every even element.
•	 All elements in reverse order.
•	 Only the first and last element.

• E7.2	 Modify the LargestInArray.java program in Section 7.3 to mark both the smallest and
the largest elements.

•• E7.3	 Write a method sumWithoutSmallest that computes the sum of an array of values,
except for the smallest one, in a single loop. In the loop, update the sum and the
smallest value. After the loop, return the difference.

• E7.4	 Add a method removeMin to the Student class of Section 7.4 that removes the minimum
score without calling other methods.

•• E7.5	 Compute the alternating sum of all elements in an array. For example, if your pro
gram reads the input

1  4  9  16  9  7  4  9  11
then it computes

1 – 4 + 9 – 16 + 9 – 7 + 4 – 9 + 11 = –2

• E7.6	 Write a method that reverses the sequence of elements in an array. For example, if
you call the method with the array

1  4  9  16  9  7  4  9  11
then the array is changed to

11  9  4  7  9  16  9  4  1

••• E7.7	 Write a program that produces ten random permutations of the numbers 1 to 10. To
generate a random permutation, you need to fill an array with the numbers 1 to 10
so that no two entries of the array have the same contents. You could do it by brute
force, generating random values until you have a value that is not yet in the array.
But that is inefficient. Instead, follow this algorithm:

Make a second array and fill it with the numbers 1 to 10.
Repeat 10 times
	 Pick a random element from the second array.
	 Remove it and append it to the permutation array.

• E7.8	 Write a method that implements the algorithm developed in Section 7.5.

•• E7.9	 Write a class DataSet that stores a number of values of type double. Provide a constructor

public DataSet(int maximumNumberOfValues)

and a method

public void add(double value)

P R A C T I C E E X E R C I S E S

Practice Exercises  363

that adds a value, provided there is still room.
Provide methods to compute the sum, average, maximum, and minimum value.

•• E7.10	 Write array methods that carry out the following tasks for an array of integers by
completing the ArrayMethods class below. For each method, provide a test program.

public class ArrayMethods
{
 private int[] values;
 public ArrayMethods(int[] initialValues) { values = initialValues; }
 public void swapFirstAndLast() { . . . }
 public void shiftRight() { . . . }
 . . .
}

a.	Swap the first and last elements in the array.
b.	Shift all elements to the right by one and move the last element into the first

position. For example, 1 4 9 16 25 would be transformed into 25 1 4 9 16.
c.	Replace all even elements with 0.
d.	Replace each element except the first and last by the larger of its two neighbors.
e.	Remove the middle element if the array length is odd, or the middle two

elements if the length is even.
f.	 Move all even elements to the front, otherwise preserving the order of the

elements.

g.	Return the second-largest element in the array.
h.	Return true if the array is currently sorted in increasing order.
i.	 Return true if the array contains two adjacent duplicate elements.
j.	 Return true if the array contains duplicate elements (which need not be adjacent).

•• E7.11	 Consider the following class:
public class Sequence
{
 private int[] values;
 public Sequence(int size) { values = new int[size]; }
 public void set(int i, int n) { values[i] = n; }
 public int get(int i) { return values[i]; }
 public int size() { return values.length; }
}

Add a method
public boolean equals(Sequence other)

that checks whether two sequences have the same values in the same order.

•• E7.12	 Add a method
public boolean sameValues(Sequence other)

to the Sequence class of Exercise E7.11 that checks whether two sequences have the
same values in some order, ignoring duplicates. For example, the two sequences

1  4  9  16  9  7  4  9  11
and

11  11  7  9  16  4  1
would be considered identical. You will probably need one or more helper methods.

364  Chapter 7  Arrays and Array Lists

••• E7.13	 Add a method
public boolean isPermutationOf(Sequence other)

to the Sequence class of Exercise E7.11 that checks whether two sequences have the
same values in some order, with the same multiplicities. For example,

1  4  9  16  9  7  4  9  11
is a permutation of

11  1  4  9  16  9  7  4  9
but

1  4  9  16  9  7  4  9  11
is not a permutation of

11  11  7  9  16  4  1  4  9
You will probably need one or more helper methods.

•• E7.14	 Add a method
public Sequence sum(Sequence other)

to the Sequence class of Exercise E7.11 that yields the sum of this sequence and
another. If the sequences don’t have the same length, assume that the missing ele-
ments are zero. For example, the sum of

1  4  9  16  9  7  4  9  11
and

11  11  7  9  16  4  1
is the sequence

12  15  16  25  25  11  5  9  11

•• E7.15	 Write a program that generates a sequence of 20 random values between 0 and 99 in
an array, prints the sequence, sorts it, and prints the sorted sequence. Use the sort
method from the standard Java library.

•• E7.16	 Add a method to the Table class below that computes the average of the neighbors of
a table element in the eight directions shown in Figure 15:

public double neighborAverage(int row, int column)

However, if the element is located at the boundary of the array, include only the
neighbors that are in the table. For example, if row and column are both 0, there are
only three neighbors.

public class Table
{
 private int[][] values;
 public Table(int rows, int columns) { values = new int[rows][columns]; }
 public void set(int i, int j, int n) { values[i][j] = n; }
}

•• E7.17	 Given the Table class of Exercise E7.16 , add a method that returns the sum of the ith
row (if horizontal is true) or column (if horizontal is false):

public double sum(int i, boolean horizontal)

•• E7.18	 Write a program that reads a sequence of input values and displays a bar chart of the
values, using asterisks, like this:

**

Practice Exercises  365

You may assume that all values are positive. First figure out the maximum value.
That value’s bar should be drawn with 40 asterisks. Shorter bars should use propor-
tionally fewer asterisks.

••• E7.19	 Repeat Exercise E7.17, but make the bars vertical, with the tallest bar twenty
asterisks high.

 *
 *
 *
 *
 *
 *
 **

••• E7.20	 Improve the program of Exercise E7.17 to work correctly when the data set contains
negative values.

•• E7.21	 Improve the program of Exercise E7.17 by adding captions for each bar. Prompt the
user for the captions and data values. The output should look like this:

 Egypt **********************
 France **
 Japan ****************************
 Uruguay **************************
Switzerland **************

• E7.22	 Consider the following class:
public class Sequence
{
 private ArrayList<Integer> values;
 public Sequence() { values = new ArrayList<Integer>(); }
 public void add(int n) { values.add(n); }
 public String toString() { return values.toString(); }
}

Add a method
public Sequence append(Sequence other)

that creates a new sequence, appending this and the other sequence, without modify-
ing either sequence. For example, if a is

1  4  9  16
and b is the sequence

9  7  4  9  11
then the call a.append(b) returns the sequence

1  4  9  16  9  7  4  9  11
without modifying a or b.

•• E7.23	 Add a method
public Sequence merge(Sequence other)

to the Sequence class of Exercise E7.21 that merges two sequences, alternating ele-
ments from both sequences. If one sequence is shorter than the other, then alternate

366  Chapter 7  Arrays and Array Lists

as long as you can and then append the remaining elements from the longer
sequence. For example, if a is

1  4  9  16
and b is

9  7  4  9  11
then a.merge(b) returns the sequence

1  9  4  7  9  4  16  9  11
without modifying a or b.

•• E7.24	 Add a method
public Sequence mergeSorted(Sequence other)

to the Sequence class of Exercise E7.21 that merges two sorted sequences, producing a
new sorted sequence. Keep an index into each sequence, indicating how much of it
has been processed already. Each time, append the smallest unprocessed value from
either sequence, then advance the index. For example, if a is

1  4  9  16
and b is

4  7  9  9  11
then a.mergeSorted(b) returns the sequence

1  4  4  7  9  9  9  11  16
If a or b is not sorted, merge the longest prefixes of a and b that are sorted.

•• P7.1	 A run is a sequence of adjacent repeated values. Write a program that generates a
sequence of 20 random die tosses in an array and that prints the die values, marking
the runs by including them in parentheses, like this:

1 2 (5 5) 3 1 2 4 3 (2 2 2 2) 3 6 (5 5) 6 3 1

Use the following pseudocode:

Set a boolean variable inRun to false.
For each valid index i in the array
	 If inRun
		 If values[i] is different from the preceding value
			 Print).
			 inRun = false.
	 If not inRun
		 If values[i] is the same as the following value
			 Print (.
			 inRun = true.
	 Print values[i].
If inRun, print).

•• P7.2	 Write a program that generates a sequence of 20 random die tosses in an array and
that prints the die values, marking only the longest run, like this:

1 2 5 5 3 1 2 4 3 (2 2 2 2) 3 6 5 5 6 3 1

If there is more than one run of maximum length, mark the first one.

P R O G R A M M I N G P R O J E C T S

Programming Projects  367

•• P7.3	 It is a well-researched fact that men in a restroom generally prefer to maximize
their distance from already occupied stalls, by occupying the middle of the longest
sequence of unoccupied places.
For example, consider the situation where ten stalls are empty.

_ _ _ _ _ _ _ _ _ _

The first visitor will occupy a middle position:
_ _ _ _ _ X _ _ _ _

The next visitor will be in the middle of the empty area at the left.
_ _ X _ _ X _ _ _ _

Write a program that reads the number of stalls and then prints out diagrams in the
format given above when the stalls become filled, one at a time. Hint: Use an array of
boolean values to indicate whether a stall is occupied.

••• P7.4	 In this assignment, you will model the game of Bulgarian Solitaire. The game starts
with 45 cards. (They need not be playing cards. Unmarked index cards work just as
well.) Randomly divide them into some number of piles of random size. For exam
ple, you might start with piles of size 20, 5, 1, 9, and 10. In each round, you take one
card from each pile, forming a new pile with these cards. For example, the sample
starting configuration would be transformed into piles of size 19, 4, 8, 9, and 5. The
solitaire is over when the piles have size 1, 2, 3, 4, 5, 6, 7, 8, and 9, in some order. (It
can be shown that you always end up with such a configuration.)
In your program, produce a random starting configuration and print it. Then keep
applying the solitaire step and print the result. Stop when the solitaire final configu-
ration is reached.

••• P7.5	 Magic squares. An n × n matrix that is filled with the numbers
1, 2, 3, . . ., n2 is a magic square if the sum of the elements in each row,
in each column, and in the two diagonals is the same value.
Write a program that reads in 16 values from the keyboard and tests
whether they form a magic square when put into a 4 × 4 array.
You need to test two features:

1.	Does each of the numbers 1, 2, ..., 16 occur in the user input?
2.	When the numbers are put into a square, are the sums of the rows, columns,

and diagonals equal to each other?

••• P7.6	 Implement the following algorithm to construct magic n × n squares; it works only if
n is odd.

Set row = n - 1, column = n / 2.
For k = 1 ... n * n
	 Place k at [row][column].
	 Increment row and column.
	 If the row or column is n, replace it with 0.
	 If the element at [row][column] has already been filled
		 Set row and column to their previous values.
		 Decrement row.

Here is the 5 × 5 square that you get if you follow this method:
Write a program whose input is the number n and whose output is the magic square
of order n if n is odd.

4 15 14 1

9 6 7 12

5 10 11 8

16 3 2 13

17 24 1 8

23 5 7 14

4 6 13 20

10 12 19 21

15

16

22

3

11 18 25 2 9

368  Chapter 7  Arrays and Array Lists

•• P7.7	 A theater seating chart is implemented as a two-dimensional array of ticket prices,
like this:

10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 20 20 20 20 20 20 10 10
10 10 20 20 20 20 20 20 10 10
10 10 20 20 20 20 20 20 10 10
20 20 30 30 40 40 30 30 20 20
20 30 30 40 50 50 40 30 30 20
30 40 50 50 50 50 50 50 40 30

Write a program that prompts users to pick either a seat or a price. Mark sold seats
by changing the price to 0. When a user specifies a seat, make sure it is available.
When a user specifies a price, find any seat with that price.

••• P7.8	 Write a program that plays tic-tac-toe. The tic-tac-toe
game is played on a 3 × 3 grid as in the photo at right. The
game is played by two players, who take turns. The first
player marks moves with a circle, the second with a cross.
The player who has formed a horizontal, vertical, or
diagonal sequence of three marks wins. Your program
should draw the game board, ask the user for the coordi-
nates of the next mark, change the players after every
successful move, and pronounce the winner.

••• P7.9	 In this assignment, you will implement a simulation of a popular casino game usually
called video poker. The card deck contains 52 cards, 13 of each suit. At the beginning
of the game, the deck is shuffled. You need to devise a fair method for shuffling. (It
does not have to be efficient.) The player pays a token for each game. Then the top
five cards of the deck are presented to the player. The player can reject none, some,
or all of the cards. The rejected cards are replaced from the top of the deck. Now the
hand is scored. Your program should pronounce it to be one of the following:

•	 No pair—The lowest hand, containing five separate cards that do not match up
to create any of the hands below.

•	 One pair—Two cards of the same value, for example two queens. Payout: 1
•	 Two pairs—Two pairs, for example two queens and two 5’s. Payout: 2
•	 Three of a kind—Three cards of the same value, for example three queens.

Payout: 3
•	 Straight—Five cards with consecutive values, not necessarily of the same suit,

such as 4, 5, 6, 7, and 8. The ace can either precede a 2 or follow a king. Payout: 4
•	 Flush—Five cards, not necessarily in order, of the same suit. Payout: 5
•	 Full House—Three of a kind and a pair, for example three queens and two 5’s.

Payout: 6
•	 Four of a Kind—Four cards of the same value, such as four queens. Payout: 25
•	 Straight Flush—A straight and a flush: Five cards with consecutive values of

the same suit. Payout: 50
•	 Royal Flush—The best possible hand in poker. A 10, jack, queen, king, and ace,

all of the same suit. Payout: 250

© lepas2004/iStockphoto.

© Kathy Muller/iStockphoto.

©
 le

pa
s2

00
4/

iS
to

ck
ph

ot
o.

©
 K

at
hy

 M
ul

le
r/

iS
to

ck
ph

ot
o.

Programming Projects  369

••• P7.10	 The Game of Life is a well-known mathematical game that gives rise to amazingly
complex behavior, although it can be specified by a few simple rules. (It is not
actually a game in the traditional sense, with players competing for a win.) Here are
the rules. The game is played on a rectangular board. Each square can be either
empty or occupied. At the beginning, you can specify empty and occupied cells in
some way; then the game runs automatically. In each
generation, the next generation is computed. A new cell is
born on an empty square if it is surrounded by exactly
three occupied neighbor cells. A cell dies of overcrowding
if it is surrounded by four or more neighbors, and it dies of
loneliness if it is surrounded by zero or one neighbor. A
neighbor is an occupant of an adjacent square to the left,
right, top, or bottom or in a diagonal direction. Figure 21
shows a cell and its neighbor cells.

Many configurations show interesting behavior when subjected to these rules.
Figure 22 shows a glider, observed over five generations. After four generations, it is
transformed into the identical shape, but located one square to the right and below.

One of the more amazing configurations is the glider gun: a complex collection of
cells that, after 30 moves, turns back into itself and a glider (see Figure 23).
Program the game to eliminate the drudgery of computing successive generations by
hand. Use a two-dimensional array to store the rectangular configuration. Write a
program that shows successive generations of the game. Ask the user to specify the
original configuration, by typing in a configuration of spaces and o characters.

Cell

Neighbors

Figure 21 
Neighborhood of a Cell

Figure 22  Glider

Generation 0 Generation 1 Generation 2 Generation 3 Generation 4

Figure 23  Glider Gun

Generation 0 Generation 30 Generation 60 Generation 90 Generation 120 Generation 150

370  Chapter 7  Arrays and Array Lists

•• Business P7.11	 A pet shop wants to give a discount to its
clients if they buy one or more pets and at
least five other items. The discount is
equal to 20 percent of the cost of the other
items, but not the pets.
Use a class Item to describe an item, with
any needed methods and a constructor

public Item(double price, boolean isPet, int quantity)

An invoice holds a collection of Item objects; use an array or array list to store them.
In the Invoice class, implement methods

public void add(Item anItem)
public double getDiscount()

Write a program that prompts a cashier to enter each price and quantity, and then a Y
for a pet or N for another item. Use a price of –1 as a sentinel. In the loop, call the add
method; after the loop, call the getDiscount method and display the returned value.

•• Business P7.12	 A supermarket wants to reward its best customer of each day, showing the cus-
tomer’s name on a screen in the supermarket. For that purpose, the store keeps an
ArrayList<Customer>. In the Store class, implement methods

public void addSale(String customerName, double amount)
public String nameOfBestCustomer()

to record the sale and return the name of the customer with the largest sale.
Write a program that prompts the cashier to enter all prices and names, adds them to
a Store object, and displays the best customer’s name. Use a price of 0 as a sentinel.

••• Business P7.13	 Improve the program of Exercise P7.12 so that it displays the top customers, that
is, the topN customers with the largest sales, where topN is a value that the user of the
program supplies. Implement a method

public ArrayList<String> nameOfBestCustomers(int topN)

If there were fewer than topN customers, include all of them.

•• Science P7.14	 Sounds can be represented by an array of “sample
values” that describe the intensity of the sound
at a point in time. The program in ch07/sound of
your companion code reads a sound file (in WAV
format), processes the sample values, and shows
the result. Your task is to process the sound by
introducing an echo. For each sound value, add
the value from 0.2 seconds ago. Scale the result so
that no value is larger than 32767.

••• Science P7.15	 You are given a two-dimensional array of values that give the height of a terrain at
different points in a square. Write a constructor

public Terrain(double[][] heights)

and a method
public void printFloodMap(double waterLevel)

that prints out a flood map, showing which of the points in the terrain would be
flooded if the water level was the given value.

© joshblake/iStockphoto.

© GordonHeeley/iStockphoto.

©
 jo

sh
bl

ak
e/

iS
to

ck
ph

ot
o.

©
 G

or
do

nH
ee

le
y/

iS
to

ck
ph

ot
o.

Programming Projects  371

In the flood map, print a * for each flooded point and a space for each point that is
not flooded.
Here is a sample map:

* * * * * *
* * * * * * * *
* * * * * *
* * * * * *
* * * * * * * *
* * * * * * * * * *
* * * * *
* * * * * *
 * *
 * * *

Then write a program that reads one hundred terrain height values and shows how
the terrain gets flooded when the water level increases in ten steps from the lowest
point in the terrain to the highest.

•• Science P7.16	 Sample values from an experiment often need to be smoothed out. One simple
approach is to replace each value in an array with the average of the value and its two
neighboring values (or one neighboring value if it is at either end of the array). Given
a class Data with instance fields

private double[] values;
private double valuesSize;

implement a method
public void smooth()

that carries out this operation. You should not create another array in your solution.

••• Science P7.17	 Write a program that models the movement of an object with mass m that is attached
to an oscillating spring. When a spring is displaced from its equilibrium position by
an amount x, Hooke’s law states that the restoring force is

F = –kx
where k is a constant that depends on the spring. (Use
10 N /m for this simulation.)
Start with a given displacement x (say, 0.5 meter). Set the
initial velocity v to 0. Compute the acceleration a from
Newton’s law (F = ma) and Hooke’s law, using a mass of
1 kg. Use a small time interval Δt = 0.01 second. Update the
velocity––it changes by aΔt. Update the displacement––it
changes by vΔt.
Every ten iterations, plot the spring displacement as a
bar, where 1 pixel represents 1 cm, as shown here.

•• Graphics P7.18	 Generate the image of a checkerboard.

© nicolamargaret/iStockphoto.

x

F

Unstretched
spring

©
 n

ic
ol

am
ar

ga
re

t/
iS

to
ck

ph
ot

o.

372  Chapter 7  Arrays and Array Lists

• Graphics P7.19	 Generate the image of a sine wave. Draw a line of pixels for every five degrees.

• Graphics P7.20	 Implement a class Cloud that contains an array list of Point2D.Double objects. Support
methods

public void add(Point2D.Double aPoint)
public void draw(Graphics2D g2)

Draw each point as a tiny circle. Write a graphical application that draws a cloud of
100 random points.

•• Graphics P7.21	 Implement a class Polygon that contains an array list of Point2D.Double objects. Support
methods

public void add(Point2D.Double aPoint)
public void draw(Graphics2D g2)

Draw the polygon by joining adjacent points with a line, and then closing it up by
joining the end and start points. Write a graphical application that draws a square
and a pentagon using two Polygon objects.

• Graphics P7.22	 Write a class Chart with methods
public void add(int value)
public void draw(Graphics2D g2)

that displays a stick chart of the added values, like this:
You may assume that the values are pixel positions.

•• Graphics P7.23	 Write a class BarChart with methods
public void add(double value)
public void draw(Graphics2D g2)

that displays a bar chart of the added values. You may assume that all added values
are positive. Stretch the bars so that they fill the entire area of the screen. You must
figure out the maximum of the values, then scale each bar.

••• Graphics P7.24	 Improve the BarChart class of Exercise P7.23 to work correctly when the data con
tains negative values.

•• Graphics P7.25	 Write a class PieChart with methods
public void add(double value)
public void draw(Graphics2D g2)

that displays a pie chart of the added values. Assume that all data values are positive.

Answers to Self-Check Questions  373

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 int[] primes = { 2, 3, 5, 7, 11 };
2.	 2, 3, 5, 3, 2
3.	 3, 4, 6, 8, 12
4.	 values[0] = 10;

values[9] = 10; or better:
values[values.length - 1] = 10;

5.	 String[] words = new String[10];
6.	 String[] words = { "Yes", "No" };
7.	 No. Because you don’t store the values, you

need to print them when you read them. But
you don’t know where to add the <= until you
have seen all values.

8.	 public class Lottery
{
 public int[] getCombination(int n) { . . . }
 . . .
}

9.	 It counts how many elements of values are
zero.

10.	 for (double x : values)
{
 System.out.println(x);
}

11.	 double product = 1;
for (double f : factors)
{
 product = product * f;
}

12.	 The loop writes a value into values[i]. The
enhanced for loop does not have the index
variable i.

13.	 20 <== largest value
10
20 <== largest value

14.	 int count = 0;
for (double x : values)
{
 if (x == 0) { count++; }
}

15.	 If all elements of values are negative, then the
result is incorrectly computed as 0.

16.	 for (int i = 0; i < values.length; i++)
{
 System.out.print(values[i]);
 if (i < values.length - 1)
 {
 System.out.print(" | ");
 }

}

Now you know why we set up the loop the
other way.

17.	 If the array has no elements, then the program
terminates with an exception.

18.	 If there is a match, then pos is incremented
before the loop exits.

19.	 This loop sets all elements to values[pos].
20.	 Use the first algorithm. The order of elements

does not matter when computing the sum.
21.	 Find the minimum value.

Calculate the sum.
Subtract the minimum value.

22.	 Use the algorithm for counting matches (Sec-
tion 6.7.2) twice, once for counting the posi-
tive values and once for counting the negative
values.

23.	 You need to modify the algorithm in Section
7.3.4.
boolean first = true;
for (int i = 0; i < values.length; i++)
{
 if (values[i] > 0))
 {
 if (first) { first = false; }
 else { System.out.print(", "); }
 }
 System.out.print(values[i]);
}

Note that you can no longer use i > 0 as the
criterion for printing a separator.

24.	 Use the algorithm to collect all positive ele-
ments in an array, then use the algorithm in
Section 7.3.4 to print the array of matches.

25.	 The paperclip for i assumes positions 0, 1, 2,
3. When i is incremented to 4, the condition
i < size / 2 becomes false, and the loop ends.
Similarly, the paperclip for j assumes positions
4, 5, 6, 7, which are the valid positions for the
second half of the array.

coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto; paperclips: © Yvan Dube/iStockphoto.(coins) © jamesbenet/iStockphoto; (dollar coins) JordiDelgado/
iStockphoto; (paperclip) © Yvan Dube/iStockphoto.

374  Chapter 7  Arrays and Array Lists

26.	 It reverses the elements in the array.
27.	 Here is one solution. The basic idea is to move

all odd elements to the end. Put one paper clip
at the beginning of the array and one at the
end. If the element at the first paper clip is odd,
swap it with the one at the other paper clip and
move that paper clip to the left. Otherwise,
move the first paper clip to the right. Stop
when the two paper clips meet. Here is the
pseudocode:

i = 0
j = size - 1
While (i < j)
	 If (a[i] is odd)
		 Swap elements at positions i and j.
		 j--
	 Else
		 i++

28.	 Here is one solution. The idea is to remove
all odd elements and move them to the end.
The trick is to know when to stop. Nothing is
gained by moving odd elements into the area
that already contains moved elements, so we
want to mark that area with another paper clip.

i = 0
moved = size
While (i < moved)
	 If (a[i] is odd)
		 Remove the element at position i and add it

		 at the end.
		 moved--

29.	 When you read inputs, you get to see values
one at a time, and you can’t peek ahead. Pick-
ing cards one at a time from a deck of cards
simulates this process better than looking at a
sequence of items, all of which are revealed.

30.	 You get the total number of gold, silver, and
bronze medals in the competition. In our
example, there are four of each.

31.	 for (int i = 0; i < 8; i++)
{
 for (int j = 0; j < 8; j++)
 {
 board[i][j] = (i + j) % 2;
 }
}

32.	 String[][] board = new String[3][3];
33.	 board[0][2] = "x";
34.	 board[0][0], board[1][1], board[2][2]
35.	 ArrayList<Integer> primes =

 new ArrayList<Integer>();
primes.add(2);
primes.add(3);
primes.add(5);
primes.add(7);
primes.add(11);

36.	 for (int i = primes.size() - 1; i >= 0; i--)
{
 System.out.println(primes.get(i));
}

37.	 "Ann", "Cal"
38.	 The names variable has not been initialized.
39.	 names1 contains "Emily", "Bob", "Cindy", "Dave";

names2 contains "Dave"
40.	 Because the number of weekdays doesn’t

change, there is no disadvantage to using an
array, and it is easier to initialize:
String[] weekdayNames = { "Monday", "Tuesday",
 "Wednesday", "Thursday", “Friday”,
 "Saturday", "Sunday" };

41.	 Reading inputs into an array list is much easier.
42.	 It is possible to introduce errors when modify-

ing code.
43.	 Add a test case to the test suite that verifies that

the error is fixed.
44.	 There is no human user who would see the

prompts because input is provided from a file.

Rolling the Dice   WE1

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 1	 Decompose your task into steps.

Our first try at decomposition simply echoes the problem statement:

Read the die values.
Count how often the values 1, 2, ..., 6 appear.
Print the counts.

But let’s think about the task a little more. This decomposition suggests that we first read and
store all die values. Do we really need to store them? After all, we only want to know how
often each face value appears. If we keep an array of counters, we can discard each input after
incrementing the counter.

This refinement yields the following outline:

For each input value
	 Increment the corresponding counter.
Print the counters.

Step 2	 Determine which algorithm(s) you need.

We don’t have a ready-made algorithm for reading inputs and incrementing a counter, but it is
straightforward to develop one. Suppose we read an input into value. This is an integer between
1 and 6. If we have an array counters of length 6, then we simply call

counters[value - 1]++;

Alternatively, we can use an array of seven integers, “wasting” the element counters[0]. That
trick makes it easier to update the counters. When reading an input value, we simply execute

counters[value]++; // value is between 1 and 6

That is, we create the array as

counters = new int[sides + 1];

Why introduce a sides variable? Suppose you later changed your mind and wanted to investi-
gate 12-sided dice:

© Ryan Ruffatti/iStockphoto.Then the program can simply be changed by setting sides to 12.

© Tom Horyn/iStockphoto.

Worked Example 7.1	 Rolling the Dice

Problem Statement  Your task is to analyze whether a die is fair
by counting how often the values 1, 2, ..., 6 appear. Your input is a
sequence of die toss values, and you should print a table with the
frequencies of each die value.

© ktsimage/iStockphoto.

© Alex Slobodkin/iStockphoto.

©
 k

ts
im

ag
e/

iS
to

ck
ph

ot
o.

©
 R

ya
n

R
uf

fa
tt

i/i
St

oc
kp

ho
to

.

WE2  Chapter 7  Arrays and Array Lists

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

The only remaining task is to print the counts. A typical output might look like this:

1: 3
2: 3
3: 2
4: 2
5: 2
6: 0

We haven’t seen an algorithm for this exact output format. It is similar to the basic loop for
printing all elements:

for (int element : counters)
{
 System.out.println(element);
}

However, that loop is not appropriate for two reasons. First, it displays the unused 0 entry.
The “enhanced” for loop is no longer suitable if we want to skip that entry. We need a tradi-
tional for loop instead:

for (int i = 1; i < counters.length; i++)
{
 System.out.println(counters[i]);
}

This loop prints the counter values, but it doesn’t quite match the sample output. We also want
the corresponding face values:

for (int i = 1; i < counters.length; i++)
{
 System.out.printf("%2d: %4d\n", i, counters[i]);
}

Step 3	 Use methods to structure your program.

We will provide a method for each step:
•	 void countInputs()
•	 void printCounters()
The main method calls these methods:

public class DiceAnalyzer
{
 public static void main(String[] args)
 {
 final int SIDES = 6;
 Dice dice = new Dice(SIDES);
 dice.countInputs();
 dice.printCounters();
 }
}

The countInputs method reads all inputs and increments the matching counters. The print-
Counters method prints the value of the faces and counters, as already described.

Step 4	 Assemble and test the program.

The listing at the end of this section shows the complete program. There is one notable feature
that we have not previously discussed. When updating a counter

counters[value]++;

we want to be sure that the user did not provide a wrong input which would cause an array
bounds error. Therefore, we reject inputs < 1 or > sides.

Rolling the Dice   WE3

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

The following table shows test cases and their expected output. To save space, we only
show the counters in the output.

Test Case Expected Output Comment

1 2 3 4 5 6 1 1 1 1 1 1 Each number occurs once.

1 2 3 1 1 1 0 0 0 Numbers that don’t appear should
have counts of zero.

1 2 3 1 2 3 4 2 2 2 1 0 0 The counters should reflect how often
each input occurs.

(No input) 0 0 0 0 0 0 This is a legal input; all counters are
zero.

0 1 2 3 4 5 6 7 Error Each input should be between 1 and 6.

Here’s the complete program:

worked_example_1/Dice.java

1 import java.util.Scanner;
2
3 /**
4 This program reads a sequence of die toss values and prints how many times
5 each value occurred.
6 */
7 public class Dice
8 {
9 private int[] counters;

10
11 public Dice(int sides)
12 {
13 counters = new int[SIDES + 1]; // counters[0] is not used
14 }
15
16 public void countInputs()
17 {
18 System.out.println("Please enter values, Q to quit:");
19 Scanner in = new Scanner(System.in);
20 while (in.hasNextInt())
21 {
22 int value = in.nextInt();
23
24 // Increment the counter for the input value
25
26 if (1 <= value && value <= counters.length)
27 {
28 counters[value]++;
29 }
30 else
31 {
32 System.out.println(value + " is not a valid input.");
33 }
34 }
35 }
36

WE4  Chapter 7  Arrays and Array Lists

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

37 public void printCounters()
38 {
39 for (int i = 1; i < counters.length; i++)
40 {
41 System.out.printf("%2d: %4d\n", i, counters[i]);
42 }
43 }
44 }

worked_example_1/DiceAnalyzer

45 public class DiceAnalyzer
46 {
47 public static void main(String[] args)
48 {
49 final int SIDES = 6;
50 Dice dice = new Dice(SIDES);
51 dice.countInputs();
52 dice.printcounters();
53 }
54 }

Program Run

Please enter values, Q to quit:
1 2 3 1 2 3 4 Q
1: 2
2: 2
3: 2
4: 1
5: 0
6: 0

A World Population Table   WE5

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 1	 First, we break down the task into steps:

Initialize the table data.
Print the table.
Compute and print the column totals.

Step 2	 Initialize the table as a sequence of rows:

int[][] populations =
 {
 { 106, 107, 111, 133, 221, 767, 1766 },
 { 502, 635, 809, 947, 1402, 3634, 5268 },
 { 2, 2, 2, 6, 13, 30, 46 },
 { 163, 203, 276, 408, 547, 729, 628 },
 { 2, 7, 26, 82, 172, 307, 392 },
 { 16, 24, 38, 74, 167, 511, 809 }
 };

Step 3	 To print the row headers, we also need a one-dimensional array of the continent names. Note
that it has the same number of rows as our table.

String[] continents =
 {
 "Africa",
 "Asia",
 "Australia",
 "Europe",
 "North America",
 "South America"
 };

© Tom Horyn/iStockphoto.

Worked Example 7.2	 A World Population Table

Problem Statement  You are to print the following population data in tabular format and
add column totals that show the total world population in the given years.

Population Per Continent (in millions)

Year 1750 1800 1850 1900 1950 2000 2050

Africa 106 107 111 133 221 767 1766

Asia 502 635 809 947 1402 3634 5268

Australia 2 2 2 6 13 30 46

Europe 163 203 276 408 547 729 628

North America 2 7 26 82 172 307 392

South America 16 24 38 74 167 511 809

© Alex Slobodkin/iStockphoto.

WE6  Chapter 7  Arrays and Array Lists

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

To print a row, we first print the continent name, then all columns. This is achieved with two
nested loops. The outer loop prints each row:

// Print population data
for (int i = 0; i < ROWS; i++)
{
 // Print the ith row
 . . .
 System.out.println(); // Start a new line at the end of the row
}

To print a row, we first print the row header, then all columns:

System.out.printf("%20s", continents[i]);
for (int j = 0; j < COLUMNS; j++)
{
 System.out.printf("%5d", populations[i][j]);
}

Step 4	 To print the column sums, we use the algorithm that was described in Section 7.6.4. We carry
out that computation once for each column.

for (int j = 0; j < COLUMNS; j++)
{
 int total = 0;
 for (int i = 0; i < ROWS; i++)
 {
 total = total + populations[i][j];
 }
 System.out.printf("%5d", total);
}

Here is the complete program:

worked_example_2/WorldPopulation.java

1 /**
2 This program prints a table showing the world population growth over 300 years.
3 */
4 public class WorldPopulation
5 {
6 public static void main(String[] args)
7 {
8 final int ROWS = 6;
9 final int COLUMNS = 7;

10
11 int[][] populations =
12 {
13 { 106, 107, 111, 133, 221, 767, 1766 },
14 { 502, 635, 809, 947, 1402, 3634, 5268 },
15 { 2, 2, 2, 6, 13, 30, 46 },
16 { 163, 203, 276, 408, 547, 729, 628 },
17 { 2, 7, 26, 82, 172, 307, 392 },
18 { 16, 24, 38, 74, 167, 511, 809 }
19 };
20
21 String[] continents =
22 {
23 "Africa",
24 "Asia",
25 "Australia",
26 "Europe",

A World Population Table   WE7

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

27 "North America",
28 "South America"
29 };
30
31 System.out.println(" Year 1750 1800 1850 1900 1950 2000 2050");
32
33 // Print population data
34
35 for (int i = 0; i < ROWS; i++)
36 {
37 // Print the ith row
38 System.out.printf("%20s", continents[i]);
39 for (int j = 0; j < COLUMNS; j++)
40 {
41 System.out.printf("%5d", populations[i][j]);
42 }
43 System.out.println(); // Start a new line at the end of the row
44 }
45
46 // Print column totals
47
48 System.out.print(" World");
49 for (int j = 0; j < COLUMNS; j++)
50 {
51 int total = 0;
52 for (int i = 0; i < ROWS; i++)
53 {
54 total = total + populations[i][j];
55 }
56 System.out.printf("%5d", total);
57 }
58 System.out.println();
59 }
60 }

Program Run

 Year 1750 1800 1850 1900 1950 2000 2050
 Africa 106 107 111 133 221 767 1766
 Asia 502 635 809 947 1402 3634 5268
 Australia 2 2 2 6 13 30 46
 Europe 163 203 276 408 547 729 628
 North America 2 7 26 82 172 307 392
 South America 16 24 38 74 167 511 809
 World 791 978 1262 1650 2522 5978 8909

