
Big Java
Cay Horstmann

 6/e Early Objects

Includes Java 8 coverage

Horstmann_BJ6_JC8_cvs_final_cj.indd 1 4/29/15 1:46 PM

www.ebook3000.com

http://www.ebook3000.org

Selected Operators and Their Precedence
(See Appendix B for the complete list.)

[] Array element access
++ -- ! Increment, decrement, Boolean not
* / % Multiplication, division, remainder
+ - Addition, subtraction
< <= > >= Comparisons
== != Equal, not equal
&& Boolean and
|| Boolean or
= Assignment

Conditional Statement

if (floor >= 13)
{
 actualFloor = floor - 1;
}
else if (floor >= 0)
{
 actualFloor = floor;
}
else
{
 System.out.println("Floor negative");
}

Condition

Executed when condition is true

Second condition (optional)

Executed when
all conditions are
false (optional)

Class Declaration

public class CashRegister
{
 private int itemCount;
 private double totalPrice;

 public void addItem(double price)
 {
 itemCount++;
 totalPrice = totalPrice + price;
 }
 . . .
}

Method

Instance variables

do
{
 System.out.print("Enter a positive integer: ");
 input = in.nextInt();
}
while (input <= 0);

for (double value : values)
{
 sum = sum + value;
}

An array or collection

Executed for each element

Loop body executed
at least once

Set to a new element in each iteration

Executed while
condition is true

Condition

Initialization Condition Update

Loop Statements

while (balance < TARGET)
{
 year++;
 balance = balance * (1 + rate / 100);
}

for (int i = 0; i < 10; i++)
{
 System.out.println(i);
}

String Operations

String s = "Hello";
int n = s.length(); // 5
char ch = s.charAt(1); // 'e'
String t = s.substring(1, 4); // "ell"
String u = s.toUpperCase(); // "HELLO"
if (u.equals("HELLO")) ... // Use equals, not ==
for (int i = 0; i < s.length(); i++)
{
 char ch = s.charAt(i);
 Process ch
}

Mathematical Operations

Math.pow(x, y) Raising to a power xy
Math.sqrt(x) Square root x
Math.log10(x) Decimal log log10(x)
Math.abs(x) Absolute value |x|
Math.sin(x)

Math.cos(x) Sine, cosine, tangent of x (x in radians)
Math.tan(x)

Variable and Constant Declarations

int cansPerPack = 6;

final double CAN_VOLUME = 0.335;

Type Name Initial value

Parameter
type and name

Exits method and
returns result.

Return typeModi�ers

Method Declaration

public static double cubeVolume(double sideLength)
{
 double volume = sideLength * sideLength * sideLength;
 return volume;
}

Input

Scanner in = new Scanner(System.in);
 // Can also use new Scanner(new File("input.txt"));

int n = in.nextInt();
double x = in.nextDouble();
String word = in.next();
String line = in.nextLine();

while (in.hasNextDouble())
{
 double x = in.nextDouble();
 Process x
}

Linked Lists, Sets, and Iterators

LinkedList<String> names = new LinkedList<>();
names.add("Bob"); // Adds at end

ListIterator<String> iter = names.listIterator();
iter.add("Ann"); // Adds before current position

String name = iter.next(); // Returns "Ann"
iter.remove(); // Removes "Ann"

Set<String> names = new HashSet<>();
names.add("Ann"); // Adds to set if not present
names.remove("Bob"); // Removes if present

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
 Process iter.next()
}

Arrays

int[] numbers = new int[5];
int[] squares = { 0, 1, 4, 9, 16 };
int[][] magicSquare =
 {
 { 16, 3, 2, 13},
 { 5, 10, 11, 8},
 { 9, 6, 7, 12},
 { 4, 15, 14, 1}
 };

for (int i = 0; i < numbers.length; i++)
{
 numbers[i] = i * i;
}

for (int element : numbers)
{
 Process element
}

System.out.println(Arrays.toString(numbers));
 // Prints [0, 1, 4, 9, 16]

 Element
Element type type Length

All elements are zero.

Maps

Map<String, Integer> scores = new HashMap<>();

scores.put("Bob", 10);
Integer score = scores.get("Bob");

for (String key : scores.keySet())
{
 Process key and scores.get(key)
}

Key type Value type

Returns null if key not present

Output

System.out.print("Enter a value: ");

System.out.println("Volume: " + volume);

System.out.printf("%-10s %10d %10.2f", name, qty, price);

try (PrintWriter out = new PrintWriter("output.txt"))
{
 Write to out
}

Left-justi�ed string Integer Floating-point number

Field width Precision

Does not advance to new line.

Use + to concatenate values.

The output is closed at the end of
 the try-with-resources statement.

Use the print/println/printf methods.

Array Lists

ArrayList<String> names = new ArrayList<String>();

names.add("Ann");
names.add("Cindy"); // [Ann, Cindy], names.size() is now 2

names.add(1, "Bob"); // [Ann, Bob, Cindy]
names.remove(2); // [Ann, Bob]
names.set(1, "Bill"); // [Ann, Bill]

String name = names.get(0); // Gets "Ann"
System.out.println(names); // Prints [Ann, Bill]

Element type
(optional)

Use wrapper type, Integer, Double,
etc., for primitive types.

Add elements to the end

Initially empty

bj6_insidecovers_8x10.indd 1 4/30/15 3:48 PM

www.ebook3000.com

http://www.ebook3000.org

Big Java
 6/e Early Objects

Cay Horstmann
San Jose State University

www.ebook3000.com

http://www.ebook3000.org

VICE PRESIDENT AND EXECUTIVE PUBLISHER	 Laurie Rosatone
DIRECTOR	 Don Fowley
EXECUTIVE EDITOR	 Bryan Gambrel
EDITORIAL PROGRAM ASSISTANT	 Jessy Moor
MARKETING MANAGER	 Dan Sayre
SENIOR PRODUCT DESIGNER	 Jennifer Welter
DESIGN DIRECTOR	 Harry Nolan
SENIOR DESIGNER	 Madelyn Lesure
SENIOR PHOTO EDITOR	 Billy Ray
SENIOR CONTENT EDITOR	 Karoline Luciano
SENIOR PRODUCTION EDITOR	 Tim Lindner
PRODUCTION MANAGEMENT SERVICES	 Cindy Johnson
COVER DESIGN	 Madelyn Lesure
COVER PHOTOS	 (tiger) Aprison Photography/Getty Images, Inc.;

(rhino) irawansubingarphotography/Getty
Images, Inc.; (bird) Nengloveyou/Shutterstock;
(monkey) © Ehlers/iStockphoto.

This book was set in 10.5/12 Stempel Garamond LT Std by Publishing Services, and printed and bound by Quad
Graphics/Versailles. The cover was printed by Quad Graphics/Versailles.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on
a foundation of principles that include responsibility to the communities we serve and where we live and work.
In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, eco-
nomic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper
specifications and procurement, ethical conduct within our business and among our vendors, and community and
charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechani-
cal, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher,
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the
Web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201)
748-6008, or online at: www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at: www.wiley.com/go/returnlabel. Outside of the
United States, please contact your local representative.

ISBN 978-1-119-05628-7

ISBN-BRV 978-1-119-05644-7

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1

www.ebook3000.com

http://www.ebook3000.org

PREFACE

iii

This book is an introduction to Java and computer programming that focuses on the
essentials—and on effective learning. The book is designed to serve a wide range of
student interests and abilities and is suitable for a first course in programming for
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is
needed.

Here are the key features of this book:

Start objects early, teach object orientation gradually.
In Chapter 2, students learn how to use objects and classes from the standard library.
Chapter 3 shows the mechanics of implementing classes from a given specification.
Students then use simple objects as they master branches, loops, and arrays. Object-
oriented design starts in Chapter 8. This gradual approach allows students to use
objects throughout their study of the core algorithmic topics, without teaching bad
habits that must be un-learned later.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “How To” guides help students with
common programming tasks. Additional Worked Examples are available online.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate
solutions to programming problems. Introduced where they are most relevant, these
strategies address barriers to success for many students. Strategies included are:

•	 Algorithm Design (with pseudocode)
•	 Tracing Objects
•	 First Do It By Hand (doing sample

calculations by hand)
•	 Flowcharts
•	 Selecting Test Cases
•	 Hand-Tracing
•	 Storyboards

•	 Solve a Simpler Problem First
•	 Adapting Algorithms
•	 Discovering Algorithms by

Manipulating Physical Objects
•	 Patterns for Object Data
•	 Thinking Recursively
•	 Estimating the Running Time of

an Algorithm

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. This book contains
a substantial number of self-check questions at the end of each section. “Practice It”
pointers suggest exercises to try after each section. And additional practice oppor-
tunities, including automatically-graded programming exercises and skill-oriented
multiple-choice questions, are available online.

www.ebook3000.com

http://www.ebook3000.org

iv  Preface 

A visual approach motivates the reader and eases navigation.
Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and special cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being
technically accurate.
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials are
presented in digestible chunks, with separate notes that go deeper into good practices
or language features when the reader is ready for the additional information. You will
not find artificial over-simplifications that give an illusion of knowledge.

Reinforce sound engineering practices.
A multitude of useful tips on software quality and common errors encourage the
development of good programming habits. The optional testing track focuses on
test-driven development, encouraging students to test their programs systematically.

Provide an optional graphics track.
Graphical shapes are splendid examples of objects. Many students enjoy writing pro-
grams that create drawings or use graphical user interfaces. If desired, these topics can
be integrated into the course by using the materials at the end of Chapters 2, 3, and 10.

Engage with optional science and business exercises.
End-of-chapter exercises are enhanced with problems from scientific and business
domains. Designed to engage students, the exercises illustrate the value of program-
ming in applied fields.

New to This Edition
Updated for Java 8
Java 8 introduces many exciting features, and this edition has been updated to take
advantage of them. Interfaces can now have default and static methods, and lambda
expressions make it easy to provide instances of interfaces with a single method. The
chapter on interfaces and the sections that cover sorting have been updated to make
these innovations optionally available. A new chapter covers the Java 8 stream library
and its applications for “big data” processing.

In addition, Java 7 features such as the try-with-resources statement are now inte-
grated into the text. Chapter 21 covers the utilities provided by the Paths and Files
classes.

Interactive Learning
Additional interactive content is available that integrates with this text and immerses
students in activities designed to foster in-depth learning. Students don’t just watch

© Terraxplorer/iStockphoto.

Visual features help the reader
with navigation.

©
 T

er
ra

xp
lo

re
r/

iS
to

ck
ph

ot
o.

www.ebook3000.com

http://www.ebook3000.org

Preface  v

animations and code traces, they work on generating them. The activities provide
instant feedback to show students what they did right and where they need to study
more. To find out more about how to make this content available in your course, visit
http://wiley.com/go/bjeo6interactivities.

“CodeCheck” is an innovative online service that students can use to work on pro-
gramming problems. You can assign exercises that have already been prepared, and
you can easily add your own. Visit http://codecheck.it to learn more and to try it out.

A Tour of the Book
The book can be naturally grouped into four parts, as illustrated by Figure 1 on page
vi. The organization of chapters offers the same flexibility as the previous edition;
dependencies among the chapters are also shown in the figure.

Part A: Fundamentals (Chapters 1–7)
Chapter 1 contains a brief introduction to computer science and Java programming.
Chapter 2 shows how to manipulate objects of predefined classes. In Chapter 3,
you will build your own simple classes from given specifications. Fundamental data
types, branches, loops, and arrays are covered in Chapters 4–7.

www.ebook3000.com

http://www.ebook3000.org

vi  Preface 

Part B: Object-Oriented Design (Chapters 8–12)
Chapter 8 takes up the subject of class design in a systematic fashion, and it intro-
duces a very simple subset of the UML notation. The discussion of polymorphism
and inheritance is split into two chapters. Chapter 9 covers inheritance and polymor-
phism, whereas Chapter 10 covers interfaces. Exception handling and basic file input/
output are covered in Chapter 11. The exception hierarchy gives a useful example for

Figure 1 
Chapter
Dependencies

21. Advanced
Input/Output

9. Inheritance

22.
Multithreading 10. Interfaces

24. Relational
Databases

13. Recursion

14. Sorting
and Searching

15. The Java
Collections
Framework

16. Basic
Data Structures

18. Generic
Classes

23. Internet
Networking

25. XML

26. Web
Applications

6. Iteration

8. Designing
Classes

17. Tree
Structures

Fundamentals

Object-Oriented Design

Data Structures & Algorithms

Applied Topics

Online Chapters

20. Graphical
User Interfaces

2. Using Objects

3. Implementing
Classes

4. Fundamental
Data Types

5. Decisions

6. Loops

7. Arrays
and Array Lists

11. Input/Output
and Exception

Handling

Sections 11.1 and 11.2
(text �le processing) can be

covered with Chapter 6.

1. Introduction

12. Object-
Oriented Design

19. Stream
Processing

www.ebook3000.com

http://www.ebook3000.org

Preface  vii

inheritance. Chapter 12 contains an introduction to object-oriented design, including
two significant case studies.

Part C: Data Structures and Algorithms (Chapters 13–19)
Chapters 13 through 19 contain an introduction to algorithms and data structures,
covering recursion, sorting and searching, linked lists, binary trees, and hash tables.
These topics may be outside the scope of a one-semester course, but can be covered
as desired after Chapter 7 (see Figure 1). Recursion, in Chapter 13, starts with simple
examples and progresses to meaningful applications that would be difficult to imple-
ment iteratively. Chapter 14 covers quadratic sorting algorithms as well as merge sort,
with an informal introduction to big-Oh notation. Each data structure is presented
in the context of the standard Java collections library. You will learn the essential
abstractions of the standard library (such as iterators, sets, and maps) as well as the
performance characteristics of the various collections. Chapter 18 introduces Java
generics. This chapter is suitable for advanced students who want to implement their
own generic classes and methods. Finally, Chapter 19 introduces the Java 8 streams
library and shows how it can be used to analyze complex real-world data.

Part D: Applied Topics (Chapters 20–26)
Chapters 20 through 26 cover Java programming techniques that definitely go
beyond a first course in Java (21–26 are on the book’s companion site). Although, as
already mentioned, a comprehensive coverage of the Java library would span many
volumes, many instructors prefer that a textbook should give students additional
reference material valuable beyond their first course. Some institutions also teach a
second-semester course that covers more practical programming aspects such as data-
base and network programming, rather than the more traditional in-depth material
on data structures and algorithms. This book can be used in a two-semester course
to give students an introduction to programming fundamentals and broad coverage
of applications. Alternatively, the material in the final chapters can be useful for stu-
dent projects. The applied topics include graphical user-interface design, advanced
file handling, multithreading, and those technologies that are of particular interest to
server-side programming: networking, databases, XML, and web applications. The
Internet has made it possible to deploy many useful applications on servers, often
accessed by nothing more than a browser. This server-centric approach to application
development was in part made possible by the Java language and libraries, and today,
much of the industrial use of Java is in server-side programming.

Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix E conflicts with instructor sentiment or local
customs, however, it is available in electronic form so that it can be modified. Appen-
dices F–J are available on the Web.

© Alex Slobodkin/iStockphoto.

A.	The Basic Latin and Latin-1
Subsets of Unicode

B.	Java Operator Summary
C.	Java Reserved Word Summary
D.	The Java Library
E.	 Java Language Coding Guidelines

F.	 Tool Summary
G.	Number Systems
H.	UML Summary
I.	 Java Syntax Summary
J.	 HTML Summary

www.ebook3000.com

http://www.ebook3000.org

viii  Preface 

Custom Book and eBook Options
Big Java may be ordered in both custom print and eBook formats. You can order a
custom print version that includes your choice of chapters—including those from
other Horstmann titles. Visit customselect.wiley.com to create your custom order.

Big Java is also available in an electronic eBook format with three key advantages:

•	 The price is significantly lower than for the printed book.
•	 The eBook contains all material in the printed book plus the web chapters and

worked examples in one easy-to-browse format.
•	 You can customize the eBook to include your choice of chapters.

The interactive edition of Big Java adds even more value by integrating a wealth of
interactive exercises into the eBook. See http://wiley.com/go/bjeo6interactivities to
find out more about this new format.

Please contact your Wiley sales rep for more information about any of these
options or check www.wiley.com/college/horstmann for available versions.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/college/horstmann to visit the online companion sites, which include

•	 Source code for all example programs in the book and its Worked Examples, plus
additional example programs.

•	 Worked Examples that apply the problem-solving steps in the book to other
realistic examples.

•	 Lecture presentation slides (for instructors only).
•	 Solutions to all review and programming exercises (for instructors only).
•	 A test bank that focuses on skills, not just terminology (for instructors only). This

extensive set of multiple-choice questions can be used with a word processor or
imported into a course management system.

•	 “CodeCheck” assignments that allow students to work on programming prob-
lems presented in an innovative online service and receive immediate feedback.
Instructors can assign exercises that have already been prepared, or easily add
their own.

FULL CODE EXA

Go to wiley.com/go/
bjeo6code to download
a program that dem
onstrates variables
and assignments.

WORKED EXAMPLE 6.3 A Sample Debugging Session

Learn how to find bugs in an algorithm for counting the
syllables of a word. Go to wiley.com/go/bjeo6examples and
download Worked Example 6.3.

MPLE

-

Pointers in the book
describe what students
will �nd on the Web.

www.ebook3000.com

http://www.ebook3000.org

Walkthrough  ix

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to download
a program that
uses common loop
algorithms.

Additional full code examples
provides complete programs for
students to run and modify.

250 Chapter 6 Loops

6.3 The for Loop
It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example:

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
 System.out.println(counter);
 counter++; // Update the counter
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 6.2).

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance reaches
the target. Another commonly used term for a
count-controlled loop is definite. You know from
the outset that the loop body will be executed a
definite number of times; ten times in our example.
In contrast, you do not know how many iterations it
takes to accumulate a target balance. Such a loop is
called indefinite.

The for loop is
used when a
value runs from a
starting point to an
ending point with a
constant increment
or decrement.

You can visualize the for loop as
an orderly sequence of steps.

Syntax 6.2 for Statement

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
}

This loop executes 6 times.
 See page 256.

This initialization
happens once
before the loop starts .

The condition is
checked before
each iteration.

This update is
executed after
each iteration.

The v ariable i is
de�ned only in this for loop.

See page 257.

These three
expressions should be related.

 See page 255.

for (initialization; condition; update)
{
 statements
}

Syntax

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotations explain required
components and point to more
information on common errors
or best practices associated
with the syntax.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional
features, such as chapter objectives and a wealth of exercises, each chapter contains
elements geared to today’s visual learner.

x  Walkthrough 

7.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 333

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Next, we swap the coins in positions 1 and 5:

Memorable photos reinforce
analogies and help students
remember the concepts.

In the same way that there can be a street named “Main Street” in di�erent cities,
a Java program can have multiple variables with the same name.

Step 1 Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
• Reading another item.
• Updating a value (such as a bank balance or total).
• Incrementing a counter.
If you can’t figure out what needs to go inside the loop, start by writing down the steps that

HOW TO 6.1 Writing a Loop

This How To walks you through the process of implementing a
loop statement. We will illustrate the steps with the following
example problem.

Problem Statement Read twelve temperature values (one for
each month) and display the number of the month with the high-
est temperature. For example, according to worldclimate.com, the
average maximum temperatures for Death Valley are (in order by
month, in degrees Celsius):

18.2 22.6 26.4 31.1 36.6 42.2 45.7 44.5 40.2 33.1 24.2 17.6
In this case, the month with the highest temperature (45.7 degrees
Celsius) is July, and the program should display 7.

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

WORKED EXAMPLE 6.1 Credit Card Processing

Learn how to use a loop to remove spaces from a credit card
number. Go to wiley.com/go/bjeo6examples and download
Worked Example 6.1.

Worked Examples apply
the steps in the How To to a
di�erent example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

Table 1 Variable Declarations in Java

Variable Name Comment

int width = 20; Declares an integer variable and initializes it with 20.

int perimeter = 4 * width; The initial value need not be a fixed value. (Of course, width
must have been previously declared.)

String greeting = "Hi!"; This variable has the type String and is initialized with the
string “Hi”.

height = 30; Error: The type is missing. This statement is not a declaration
but an assignment of a new value to an existing variable—see
Section 2.2.5.

int width = "20"; Error: You cannot initialize a number with the string “20”.
(Note the quotation marks.)

int width; Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1 on page 40.

int width, height; Declares two integer variables in a single statement. In this
book, we will declare each variable in a separate statement.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Walkthrough  xi

section_1/Investment.java

1 /**
2 A class to monitor the growth of an investment that
3 accumulates interest at a fixed annual rate.
4 */
5 public class Investment
6 {
7 private double balance;
8 private double rate;
9 private int year;

10
11 /**
12 Constructs an Investment object from a starting balance and
13 interest rate.
14 @param aBalance the starting balance
15 @param aRate the interest rate in percent
16 */
17 public Investment(double aBalance, double aRate)
18 {
19 balance = aBalance;
20 rate = aRate;
21 year = 0;
22 }
23
24 /**
25 Keeps accumulating interest until a target balance has
26 been reached.
27 @param targetBalance the desired balance
28 */

The for loop neatly groups the initialization, condition, and update expressions
together. However, it is important to realize that these expressions are not executed
together (see Figure 3).

• The initialization is executed once, before the loop is entered. 1

• The condition is checked before each iteration. 2 5

• The update is executed after each iteration. 4

Figure 3
Execution of a
for Loop

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Self-check exercises at the
end of each section are designed
to make students think through
the new material—and can
spark discussion in lecture.

Optional science and business
exercises engage students with
realistic applications of Java.

Program listings are carefully
designed for easy reading,
going well beyond simple
color coding. Methods are set
o� by a subtle outline.

This means “compute the value of width + 10 1 and store that value in the variable
width 2 ” (see Figure 4).

In Java, it is not a problem that the variable width is used on both sides of the = sym-
bol. Of course, in mathematics, the equation width = width + 10 has no solution.

Figure 4
Executing the Statement
width = width + 10

1

width =

width + 10

40

30

2

width = 40

Compute the value of the right-hand side

Store the value in the variable

Progressive �gures trace code
segments to help students visualize
the program �ow. Color is used
consistently to make variables and
other elements easily recognizable.

11. Write the for loop of the Investment class as a while loop.
12. How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{
 System.out.println(n);
}

13. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
14. Write a for loop that computes the sum of the integers from 1 to n.

Practice It Now you can try these exercises at the end of the chapter: R6.4, R6.10, E6.8, E6.12.

S E L F C H E C K

•• Business E6.17 Currency conversion. Write a program
that first asks the user to type today’s
price for one dollar in Japanese yen,
then reads U.S. dollar values and
converts each to yen. Use 0 as a sentinel.

• Science P6.15 Radioactive decay of radioactive materials can be
modeled by the equation A = A0e-t (log 2/h), where A is
the amount of the material at time t, A0 is the amount
at time 0, and h is the half-life.
Technetium-99 is a radioisotope that is used in imaging
of the brain. It has a half-life of 6 hours. Your program
should display the relative amount A / A0 in a patient
body every hour for 24 hours after receiving a dose.

xii  Walkthrough 

Length and Size

Unfortunately, the Java syntax for
determining the number of elements
in an array, an array list, and a string
is not at all consistent. It is a com-
mon error to confuse these. You just
have to remember the correct syntax
for every data type.

Common Error 7.4

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate
the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet
of paper is within reach. Make a column for each variable.
Have the program code ready. Use a marker, such as a
paper clip, to mark the current statement. In your mind,
execute statements one at a time. Every time the value of a
variable changes, cross out the old value and write the new
value below the old one.

For example, let’s trace the getTax method with the data
from the program run above.

When the TaxReturn object is constructed, the income
instance variable is set to 80,000 and status is set to MARRIED. Then the getTax method is called.
In lines 31 and 32 of TaxReturn.java, tax1 and tax2 are initialized to 0.
29 public double getTax()
30 {
31 double tax1 = 0;
32 double tax2 = 0;
33

Programming Tip 5.5

Hand-tracing helps you
understand whether a
program works correctly.

income status tax1 tax2

 80000 MARRIED 0 0

Because status is not SINGLE, we move to the else
 branch of the outer if statement (line 46).
34 if (status == SINGLE)
35 {
36 if (income <= RATE1_SINGLE_LIMIT)
37 {
38 tax1 = RATE1 * income;
39 }
40 else
41 {
42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44 }
45 }
46 else
47 {

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the
one shown in the figure below) whenever the users of your program need to pick a file. The
JFileChooser class implements a file dialog box for the Swing user-interface toolkit.

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call.

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFi leChooser.CANCEL_OPTION, if the
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to
obtain a File object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{

File selectedFile = chooser.getSelectedFile();
in = new Scanner(selectedFile);
. . .

}

Special Topic 11.2

A JFileChooser Dialog Box

Button is “Save” when
showSaveDialog method

is called

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Special Topics present optional
topics and provide additional
explanation of others.

Lambda Expressions

In the preceding section, you saw how to use interfaces for specifying variations in behavior.
The average method needs to measure each object, and it does so by calling the measure method
of the supplied Measurer object.

Unfortunately, the caller of the average method has to do a fair amount of work; namely,
to de�ne a class that implements the Measurer interface and to construct an object of that class.
Java 8 has a convenient shortcut for these steps, provided that the interface has a single abstract
method. Such an interface is called a functional interface because its purpose is to de�ne a
single function. The Measurer interface is an example of a functional interface.

To specify that single function, you can use a lambda expression, an expression that de�nes
the parameters and return value of a method in a compact notation. Here is an example:

(Object obj) -> ((BankAccount) obj).getBalance()

This expression de�nes a function that, given an object, casts it to a BankAccount and returns the
balance.

(The term “lambda expression” comes from a mathematical notation that uses the Greek
letter lambda (λ) instead of the -> symbol. In other programming languages, such an expres-
sion is called a function expression.)

A lambda expression cannot stand alone. It needs to be assigned to a variable whose type is
a functional interface:

Measurer accountMeas = (Object obj) -> ((BankAccount) obj).getBalance();

Java 8 Note 10.4

When computers
were first invented

in the 1940s, a computer filled an
entire room. The photo below shows
the ENIAC (electronic numerical inte-
grator and computer), completed in
1946 at the University of Pennsylvania.
The ENIAC was used by the military
to compute the trajectories of projec-
tiles. Nowadays, computing facilities
of search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

This transit card contains a computer.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies are nowadays often
consumed on com-
puters, and comput-
ers are almost always
involved in their production. The
book that you are reading right now

could not have been written without
computers.

Computing & Society 1.1 Computers Are Everywhere

Computing & Society presents social
and historical topics on computing—for
interest and to ful�ll the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

Java 8 Notes provide detail
about new features in Java 8.

Acknowledgments  xiii

Acknowledgments
Many thanks to Bryan Gambrel, Don Fowley, Jenny Welter, Jessy Moor, Jennifer
Lartz, Billy Ray, and Tim Lindner at John Wiley & Sons, and Vickie Piercey at Pub-
lishing Services for their help with this project. An especially deep acknowledgment
and thanks goes to Cindy Johnson for her hard work, sound judgment, and amazing
attention to detail.

I am grateful to Jose Cordova, The University of Louisiana at Monroe, Suzanne
Dietrich, Arizona State University,West Campus, Mike Domaratzki, University of
Manitoba, Guy Helmer, Iowa State University, Peter Lutz, Rochester Institute of
Technology, Carolyn Schauble, Colorado State University, Brent Seales, University
of Kentucky, and Brent Wilson, George Fox University for their excellent contribu-
tions to the supplementary materials.

Many thanks to the individuals who reviewed the manuscript for this edition,
made valuable suggestions, and brought an embarrassingly large number of errors
and omissions to my attention. They include:

Robin Carr, Drexel University
Gerald Cohen, The Richard Stockton College of New Jersey
Aaron Keen, California Polytechnic State University, San Luis Obispo
Aurelia Smith, Columbus State University
Aakash Taneja, The Richard Stockton College of New Jersey
Craig Tanis, University of Tennessee at Chattanooga
Katherine Winters, University of Tennessee at Chattanooga

Every new edition builds on the suggestions and experiences of prior reviewers and
users. I am grateful for the invaluable contributions these individuals have made:

Eric Aaron, Wesleyan University
James Agnew, Anne Arundel

Community College
Tim Andersen, Boise State

University
Ivan Bajic, San Diego State

University
Greg Ballinger, Miami Dade College
Ted Bangay, Sheridan Institute

of Technology
Ian Barland, Radford University
George Basham, Franklin University
Jon Beck, Truman State University
Sambit Bhattacharya, Fayetteville

State University
Rick Birney, Arizona State

University
Paul Bladek, Edmonds Community

College
Matt Boutell, Rose-Hulman

Institute of Technology
Joseph Bowbeer, Vizrea Corporation
Timothy A. Budd, Oregon State

University

John Bundy, DeVry University
Chicago

Robert P. Burton, Brigham Young
University

Frank Butt, IBM
Jerry Cain, Stanford University
Adam Cannon, Columbia

University
Michael Carney, Finger Lakes

Community College
Christopher Cassa, Massachusetts

Institute of Technology
Nancy Chase, Gonzaga University
Dr. Suchindran S. Chatterjee,

Arizona State University
Archana Chidanandan, Rose-

Hulman Institute of Technology
Vincent Cicirello, The Richard

Stockton College of New Jersey
Teresa Cole, Boise State University
Deborah Coleman, Rochester

Institute of Technology
Tina Comston, Franklin University

Lennie Cooper, Miami Dade College
Jose Cordova, University of

Louisiana, Monroe
Valentino Crespi, California State

University, Los Angeles
Jim Cross, Auburn University
Russell Deaton, University

of Arkansas
Geoffrey Decker, Northern Illinois

University
H. E. Dunsmore, Purdue University
Robert Duvall, Duke University
Sherif Elfayoumy, University of

North Florida
Eman El-Sheikh, University of

West Florida
Henry A. Etlinger, Rochester

Institute of Technology
John Fendrich, Bradley University
David Freer, Miami Dade College
John Fulton, Franklin University
David Geary, Sabreware, Inc.
Margaret Geroch, Wheeling Jesuit

University

xiv  Acknowledgments 

Ahmad Ghafarian, North Georgia
College & State University

Rick Giles, Acadia University
Stacey Grasso, College of San Mateo
Jianchao Han, California State

University, Dominguez Hills
Lisa Hansen, Western New England

College
Elliotte Harold
Eileen Head, Binghamton

University
Cecily Heiner, University of Utah
Guy Helmer, Iowa State University
Ed Holden, Rochester Institute

of Technology
Brian Howard, Depauw University
Lubomir Ivanov, Iona College
Norman Jacobson, University of

California, Irvine
Steven Janke, Colorado College
Curt Jones, Bloomsburg University
Mark Jones, Lock Haven University

of Pennsylvania
Dr. Mustafa Kamal, University of

Central Missouri
Mugdha Khaladkar, New Jersey

Institute of Technology
Gary J. Koehler, University of

Florida
Elliot Koffman, Temple University
Ronald Krawitz, DeVry University
Norm Krumpe, Miami University

Ohio
Jim Leone, Rochester Institute

of Technology
Kevin Lillis, St. Ambrose University
Darren Lim, Siena College
Hong Lin, DeVry University
Kathy Liszka, University of Akron
Hunter Lloyd, Montana State

University
Youmin Lu, Bloomsburg University
Kuber Maharjan, Purdue University

College of Technology at
Columbus

John S. Mallozzi, Iona College
John Martin, North Dakota State

University
Jeanna Matthews, Clarkson

University
Patricia McDermott-Wells, Florida

International University
Scott McElfresh, Carnegie Mellon

University

Joan McGrory, Christian Brothers
University

Carolyn Miller, North Carolina
State University

Sandeep R. Mitra, State University
of New York, Brockport

Teng Moh, San Jose State University
Bill Mongan, Drexel University
John Moore, The Citadel
Jose-Arturo Mora-Soto, Jesica

Rivero-Espinosa, and Julio-Angel
Cano-Romero, University
of Madrid

Faye Navabi, Arizona State
University

Parviz Partow-Navid, California
State University, Los Angeles

George Novacky, University
of Pittsburgh

Kevin O’Gorman, California
Polytechnic State University, San
Luis Obispo

Michael Olan, Richard Stockton
College

Mimi Opkins, California State
University Long Beach

Derek Pao, City University of
Hong Kong

Kevin Parker, Idaho State University
Jim Perry, Ulster County

Community College
Cornel Pokorny, California

Polytechnic State University,
San Luis Obispo

Roger Priebe, University of Texas,
Austin

C. Robert Putnam, California State
University, Northridge

Kai Qian, Southern Polytechnic
State University

Cyndi Rader, Colorado School
of Mines

Neil Rankin, Worcester Polytechnic
Institute

Brad Rippe, Fullerton College
Pedro I. Rivera Vega, University

of Puerto Rico, Mayaguez
Daniel Rogers, SUNY Brockport
Chaman Lal Sabharwal, Missouri

University of Science and
Technology

Katherine Salch, Illinois Central
College

John Santore, Bridgewater State
College

Javad Shakib, DeVry University
Carolyn Schauble, Colorado State

University
Brent Seales, University of Kentucky
Christian Shin, SUNY Geneseo
Charlie Shu, Franklin University
Jeffrey Six, University of Delaware
Don Slater, Carnegie Mellon

University
Ken Slonneger, University of Iowa
Donald Smith, Columbia College
Joslyn A. Smith, Florida

International University
Stephanie Smullen, University of

Tennessee, Chattanooga
Robert Strader, Stephen F. Austin

State University
Monica Sweat, Georgia Institute

of Technology
Peter Stanchev, Kettering University
Shannon Tauro, University of

California, Irvine
Ron Taylor, Wright State University
Russell Tessier, University of

Massachusetts, Amherst
Jonathan L. Tolstedt, North Dakota

State University
David Vineyard, Kettering

University
Joseph Vybihal, McGill University
Xiaoming Wei, Iona College
Jonathan S. Weissman, Finger Lakes

Community College
Todd Whittaker, Franklin University
Robert Willhoft, Roberts Wesleyan

College
Lea Wittie, Bucknell University
David Womack, University of Texas

at San Antonio
David Woolbright, Columbus State

University
Tom Wulf, University of Cincinnati
Catherine Wyman, DeVry

University
Arthur Yanushka, Christian Brothers

University
Qi Yu, Rochester Institute of

Technology
Salih Yurttas, Texas A&M University

CONTENTS

xv

PREFACE  iii

SPECIAL FEATURES  xxiv

INTRODUCTION  1

1.1	 Computer Programs   2

1.2	 The Anatomy of a Computer   3

1.3	 The Java Programming Language   6

1.4	 Becoming Familiar with Your
Programming Environment   7

1.5	 Analyzing Your First Program   11

1.6	 Errors   14

1.7	 PROBLEM SOLVING  Algorithm Design   15

The Algorithm Concept   16
An Algorithm for Solving an Investment
Problem   17
Pseudocode   18
From Algorithms to Programs   18

HT 1	 Describing an Algorithm with
Pseudocode  19

WE 1	 Writing an Algorithm for Tiling a Floor  21

USING OBJECTS  31

2.1	 Objects and Classes   32

Using Objects   32
Classes   33

2.2	 Variables   34

Variable Declarations   34
Types   36
Names   37
Comments   38
Assignment   38

2.3	 Calling Methods   41

The Public Interface of a Class   41
Method Arguments   42
Return Values   43
Method Declarations   45

2.4	 Constructing Objects   46

2.5	 Accessor and Mutator Methods   48

2.6	 The API Documentation   50
Browsing the API Documentation   50
Packages   52

2.7	 Implementing a Test Program   53
ST 1	 Testing Classes in an Interactive

Environment  54

WE 1	 How Many Days Have You Been Alive? 
© Alex Slobodkin/iStockphoto.WE 2	 Working with Pictures 

© Alex Slobodkin/iStockphoto.2.8	 Object References   55

2.9	 Graphical Applications   59

Frame Windows   59
Drawing on a Component   60
Displaying a Component in a Frame   63

2.10	 Ellipses, Lines, Text, and Color   64

Ellipses and Circles   64
Lines   65
Drawing Text   65
Colors   66

IMPLEMENTING CLASSES  79

3.1	 Instance Variables and Encapsulation   80

Instance Variables   80
The Methods of the Counter Class   82
Encapsulation   82

3.2	 Specifying the Public Interface
of a Class   84

Specifying Methods   84
Specifying Constructors   85
Using the Public Interface   87
Commenting the Public Interface   87

3.3	 Providing the Class Implementation   91

Providing Instance Variables   91
Providing Constructors   92
Providing Methods   93

HT 1	 Implementing a Class  96

WE 1	 Making a Simple Menu 
© Alex Slobodkin/iStockphoto.3.4	 Unit Testing   100

1

2

3

xvi  Contents 

3.5	 PROBLEM SOLVING  Tracing Objects   103

3.6	 Local Variables   105

3.7	 The this Reference   107
ST 1	 Calling One Constructor from Another  110

3.8	 Shape Classes   110
HT 2	 Drawing Graphical Shapes  114

FUNDAMENTAL DATA
TYPES  129

4.1	 Numbers   130

Number Types   130
Constants   132

ST 1	 Big Numbers  136

4.2	 Arithmetic   137

Arithmetic Operators   137
Increment and Decrement   138
Integer Division and Remainder   138
Powers and Roots   139
Converting Floating-Point Numbers
to Integers   140

J8 1	 Avoiding Negative Remainders  143

ST 2	 Combining Assignment and Arithmetic  143

ST 3	 Instance Methods and Static Methods  143

4.3	 Input and Output   145

Reading Input    145
Formatted Output   146

HT 1	 Carrying Out Computations  149

WE 1	 Computing the Volume and Surface Area of
a Pyramid 

© Alex Slobodkin/iStockphoto.4.4	 PROBLEM SOLVING  First Do it By Hand   152
WE 2	 Computing Travel Time 

© Alex Slobodkin/iStockphoto.4.5	 Strings   154

The String Type   154
Concatenation   155
String Input   155
Escape Sequences   156
Strings and Characters   156
Substrings   157

ST 4	 Using Dialog Boxes for Input and
Output  160

DECISIONS  177

5.1	 The if Statement   178
ST 1	 The Conditional Operator  182

5.2	 Comparing Values   183

Relational Operators   184
Comparing Floating-Point Numbers   185
Comparing Strings   186
Comparing Objects   187
Testing for null   187

HT 1	 Implementing an if Statement  190

WE 1	 Extracting the Middle 
© Alex Slobodkin/iStockphoto.5.3	 Multiple Alternatives   193

ST 2	 The switch Statement  196

5.4	 Nested Branches   196
ST 3	 Block Scope  201

ST 4	 Enumeration Types  203

5.5	 PROBLEM SOLVING  Flowcharts   203

5.6	 PROBLEM SOLVING  Selecting Test
Cases   206
ST 5	 Logging  208

5.7	 Boolean Variables and Operators   209
ST 6	 Short-Circuit Evaluation of Boolean

Operators  213

ST 7	 De Morgan’s Law  213

5.8	 APPLICATION  Input Validation   214

LOOPS  237

6.1	 The while Loop   238

6.2	 PROBLEM SOLVING  Hand-Tracing   245

6.3	 The for Loop   250
ST 1	 Variables Declared in a for Loop

Header  257

6.4	 The do Loop   258

6.5	 APPLICATION  Processing Sentinel
Values   259
ST 2	 Redirection of Input and Output  262

ST 3	 The “Loop and a Half” Problem  262

ST 4	 The break and continue Statements  263

6.6	 PROBLEM SOLVING  Storyboards   265

6.7	 Common Loop Algorithms   268

Sum and Average Value   268
Counting Matches   268

4

5

6

Contents  xvii

Finding the First Match   269
Prompting Until a Match is Found   270
Maximum and Minimum   270
Comparing Adjacent Values   271

HT 1	 Writing a Loop  272

WE 1	 Credit Card Processing 
© Alex Slobodkin/iStockphoto.6.8	 Nested Loops   275

WE 2	 Manipulating the Pixels in an Image 
© Alex Slobodkin/iStockphoto.6.9	 APPLICATION  Random Numbers and

Simulations   279

Generating Random Numbers   279
The Monte Carlo Method   281

6.10	 Using a Debugger   282
HT 2	 Debugging  285

WE 3	 A Sample Debugging Session 
© Alex Slobodkin/iStockphoto.

ARRAYS AND ARRAY
LISTS  307

7.1	 Arrays   308

Declaring and Using Arrays   308
Array References   311
Using Arrays with Methods   312
Partially Filled Arrays   312

ST 1	 Methods with a Variable Number of
Arguments  315

7.2	 The Enhanced for Loop   317

7.3	 Common Array Algorithms   318

Filling   318
Sum and Average Value   319
Maximum and Minimum   319
Element Separators   319
Linear Search   320
Removing an Element   320
Inserting an Element   321
Swapping Elements   322
Copying Arrays   323
Reading Input   324

ST 2	 Sorting with the Java Library  327

7.4	 PROBLEM SOLVING  Adapting
Algorithms   327
HT 1	 Working with Arrays  330

WE 1	 Rolling the Dice 
© Alex Slobodkin/iStockphoto.7.5	 PROBLEM SOLVING  Discovering Algorithms by

Manipulating Physical Objects   332

7.6	 Two-Dimensional Arrays   336

Declaring Two-Dimensional Arrays   336
Accessing Elements   337
Locating Neighboring Elements   338
Accessing Rows and Columns   338

WE 2	 A World Population Table 
© Alex Slobodkin/iStockphoto.ST 3	 Two-Dimensional Arrays with Variable

Row Lengths  341

ST 4	 Multidimensional Arrays  343

7.7	 Array Lists   343

Declaring and Using Array Lists   344
Using the Enhanced for Loop with
Array Lists   345
Copying Array Lists   346
 Wrappers and Auto-boxing   347
Using Array Algorithms with Array Lists   348
Storing Input Values in an Array List   348
Removing Matches   348
Choosing Between Array Lists and Arrays   349

ST 5	 The Diamond Syntax  352

7.8	 Regression Testing   352

DESIGNING CLASSES  375

8.1	 Discovering Classes   376

8.2	 Designing Good Methods   377

Providing a Cohesive Public Interface   377
Minimizing Dependencies   378
Separating Accessors and Mutators   379
Minimizing Side Effects   380

ST 1	 Call by Value and Call by Reference  382

8.3	 PROBLEM SOLVING  Patterns for
Object Data   386

Keeping a Total   386
Counting Events   387
Collecting Values   387
Managing Properties of an Object   388
Modeling Objects with Distinct States   388
Describing the Position of an Object   389

8.4	 Static Variables and Methods   391
ST 2	 Alternative Forms of Instance and Static

Variable Initialization  394

ST 3	 Static Imports  395

8.5	 PROBLEM SOLVING  Solve a Simpler
Problem First   395

7

8

xviii  Contents 

8.6	 Packages   400

Organizing Related Classes into Packages   400
Importing Packages   401
Package Names   401
Packages and Source Files   402

ST 4	 Package Access  403

HT 1	 Programming with Packages  404

8.7	 Unit Test Frameworks   405

INHERITANCE  423

9.1	 Inheritance Hierarchies   424

9.2	 Implementing Subclasses   428

9.3	 Overriding Methods   433
ST 1	 Calling the Superclass Constructor  438

9.4	 Polymorphism   439
ST 2	 Dynamic Method Lookup and the Implicit

Parameter  442

ST 3	 Abstract Classes  443

ST 4	 Final Methods and Classes  444

ST 5	 Protected Access  444

HT 1	 Developing an Inheritance Hierarchy  445

WE 1	 Implementing an Employee Hierarchy for
Payroll Processing 

© Alex Slobodkin/iStockphoto.9.5	 Object: The Cosmic Superclass   450

Overriding the toString Method    450
The equals Method   452
The instanceof Operator   453

ST 6	 Inheritance and the toString Method  455

ST 7	 Inheritance and the equals Method  456

INTERFACES  465

10.1	 Using Interfaces for Algorithm
Reuse   466

Discovering an Interface Type   466
Declaring an Interface Type   467
Implementing an Interface Type   469
Comparing Interfaces and Inheritance   471

ST 1	 Constants in Interfaces  473

J8 1	 Static Methods in Interfaces  473

J8 2	 Default Methods  473

J8 3	 Conflicting Default Methods  474

10.2	 Working with Interface Variables   475

Converting from Classes to Interfaces   475
Invoking Methods on Interface Variables   476
Casting from Interfaces to Classes    476

WE 1	 Investigating Number Sequences 
© Alex Slobodkin/iStockphoto.10.3	 The Comparable Interface   477

ST 2	 The clone Method and the Cloneable
Interface  479

10.4	 Using Interfaces for Callbacks   482
J8 4	 Lambda Expressions  485

ST 3	 Generic Interface Types  486

10.5	 Inner Classes   487
ST 4	 Anonymous Classes  488

10.6	 Mock Objects   489

10.7	 Event Handling   490

Listening to Events   491
Using Inner Classes for Listeners   493

J8 5	 Lambda Expressions for Event Handling  496

10.8	 Building Applications with Buttons   496

10.9	 Processing Timer Events   499

10.10	Mouse Events   502
ST 5	 Keyboard Events  506

ST 6	 Event Adapters  506

INPUT/OUTPUT AND
EXCEPTION HANDLING  519

11.1	 Reading and Writing Text Files   520
ST 1	 Reading Web Pages  523

ST 2	 File Dialog Boxes  523

ST 3	 Character Encodings  524

11.2	 Text Input and Output   525

Reading Words   525
Reading Characters   526
Classifying Characters   526
Reading Lines   527
Scanning a String   528
Converting Strings to Numbers   528
Avoiding Errors When Reading Numbers   529
Mixing Number, Word, and Line Input   529
Formatting Output   530

ST 4	 Regular Expressions  532

ST 5	 Reading an Entire File  533

9

10

11

www.ebook3000.com

http://www.ebook3000.org

Contents  xix

11.3	 Command Line Arguments   533
HT 1	 Processing Text Files  536

WE 1	 Analyzing Baby Names 
© Alex Slobodkin/iStockphoto.11.4	 Exception Handling   540

Throwing Exceptions   540
Catching Exceptions   542
Checked Exceptions   543
Closing Resources   545
Designing Your Own Exception Types   546

ST 6	 Assertions  549

ST 7	 The try/finally Statement  549

11.5	 APPLICATION  Handling Input Errors   549

OBJECT-ORIENTED
DESIGN  565

12.1	 Classes and Their Responsibilities   566

Discovering Classes   566
The CRC Card Method   567

12.2	 Relationships Between Classes   569

Dependency   569
Aggregation   570
Inheritance   571

HT 1	 Using CRC Cards and UML Diagrams in
Program Design  572

ST 1	 Attributes and Methods in UML
Diagrams  573

ST 2	 Multiplicities  574

ST 3	 Aggregation, Association, and
Composition  574

12.3	 APPLICATION  Printing an Invoice   575

Requirements   575
CRC Cards   576
UML Diagrams   578
Method Documentation   579
Implementation   581

WE 1	 Simulating an Automatic Teller Machine 
© Alex Slobodkin/iStockphoto.

RECURSION  593

13.1	 Triangle Numbers   594
HT 1	 Thinking Recursively  599

WE 1	 Finding Files 
© Alex Slobodkin/iStockphoto.13.2	 Recursive Helper Methods   602

13.3	 The Efficiency of Recursion   604

13.4	 Permutations   609

13.5	 Mutual Recursion   614

13.6	 Backtracking   620
WE 2	 Towers of Hanoi 

© Alex Slobodkin/iStockphoto.

SORTING AND
SEARCHING  635

14.1	 Selection Sort   636

14.2	 Profiling the Selection Sort
Algorithm   639

14.3	 Analyzing the Performance of the
Selection Sort Algorithm   642
ST 1	 Oh, Omega, and Theta  644

ST 2	 Insertion Sort  645

14.4	 Merge Sort   647

14.5	 Analyzing the Merge Sort Algorithm   650
ST 3	 The Quicksort Algorithm  652

14.6	 Searching   654

Linear Search   654
Binary Search   655

14.7	 PROBLEM SOLVING  Estimating the Running
Time of an Algorithm   659

Linear Time   659
Quadratic Time   660
The Triangle Pattern   661
Logarithmic Time   662

14.8	 Sorting and Searching in the Java
Library   664

Sorting   664
Binary Search   664
Comparing Objects   665

ST 4	 The Comparator Interface  666

J8 1	 Comparators with Lambda Expressions  667

WE 1	 Enhancing the Insertion Sort Algorithm 
© Alex Slobodkin/iStockphoto.

THE JAVA COLLECTIONS
FRAMEWORK  677

15.1	 An Overview of the Collections
Framework   678

12

13

14

15

xx  Contents 

15.2	 Linked Lists   681

The Structure of Linked Lists   681
The LinkedList Class of the Java Collections
Framework   682
List Iterators   683

15.3	 Sets   687

Choosing a Set Implementation   687
Working with Sets   688

15.4	 Maps   692
J8 1	 Updating Map Entries  694

HT 1	 Choosing a Collection  694

WE 1	 Word Frequency 
© Alex Slobodkin/iStockphoto.ST 1	 Hash Functions  696

15.5	 Stacks, Queues, and Priority Queues   698

Stacks   698
Queues   699
Priority Queues   699

15.6	 Stack and Queue Applications   701

Balancing Parentheses   701
Evaluating Reverse Polish Expressions   702
Evaluating Algebraic Expressions   703
Backtracking   706

WE 2	 Simulating a Queue of Waiting
Customers 

© Alex Slobodkin/iStockphoto.ST 2	 Reverse Polish Notation  709

BASIC DATA
STRUCTURES  721

16.1	 Implementing Linked Lists   722

The Node Class   722
Adding and Removing the First Element   723
The Iterator Class   724
Advancing an Iterator   725
Removing an Element   726
Adding an Element   728
Setting an Element to a Different Value   729
Efficiency of Linked List Operations   729

ST 1	 Static Classes  736

WE 1	 Implementing a Doubly-Linked List 
© Alex Slobodkin/iStockphoto.16.2	 Implementing Array Lists   737

Getting and Setting Elements   737
Removing or Adding Elements   738
Growing the Internal Array   739

16.3	 Implementing Stacks and Queues   741

Stacks as Linked Lists   741
Stacks as Arrays   743
Queues as Linked Lists   743
Queues as Circular Arrays   744

16.4	 Implementing a Hash Table   747

Hash Codes   747
Hash Tables   747
Finding an Element   749
Adding and Removing Elements    749
Iterating over a Hash Table   750

ST 2	 Open Addressing  755

TREE STRUCTURES  765

17.1	 Basic Tree Concepts   766

17.2	 Binary Trees   770

Binary Tree Examples   770
Balanced Trees   772
A Binary Tree Implementation   773

WE 1	 Building a Huffman Tree 
© Alex Slobodkin/iStockphoto.17.3	 Binary Search Trees   775

The Binary Search Property   775
Insertion   776
Removal   778
Efficiency of the Operations   780

17.4	 Tree Traversal   784

Inorder Traversal   784
Preorder and Postorder Traversals   785
The Visitor Pattern   786
Depth-First and Breadth-First Search   787
Tree Iterators   789

17.5	 Red-Black Trees   790

Basic Properties of Red-Black Trees   790
Insertion   792
Removal   793

WE 2	 Implementing a Red-Black Tree 
© Alex Slobodkin/iStockphoto.17.6	 Heaps   797

17.7	 The Heapsort Algorithm   808

GENERIC CLASSES  823

18.1	 Generic Classes and Type
Parameters   824

18.2	 Implementing Generic Types   825

16

17

18

Contents  xxi

18.3	 Generic Methods   829

18.4	 Constraining Type Parameters   831
ST 1	 Wildcard Types  834

18.5	 Type Erasure   835
ST 2	 Reflection  838

WE 1	 Making a Generic Binary Search
Tree Class 

© Alex Slobodkin/iStockphoto.

STREAM PROCESSING  845

19.1	 The Stream Concept   846

19.2	 Producing Streams   848

19.3	 Collecting Results   850
ST 1	 Infinite Streams  851

19.4	 Transforming Streams   852

19.5	 Lambda Expressions   855
ST 2	 Method and Constructor References  857

ST 3	 Higher-Order Functions  858

ST 4	 Higher-Order Functions and
Comparators  859

19.6	 The Optional Type   859

19.7	 Other Terminal Operations   862

19.8	 Primitive-Type Streams   863

Creating Primitive-Type Streams   864
Mapping a Primitive-Type Stream   864
Processing Primitive-Type Streams   864

19.9	 Grouping Results   866

19.10	Common Algorithms Revisited   868

Filling   868
Sum, Average, Maximum, and Minimum   869
Counting Matches   869
Element Separators   869
Linear Search   870
Comparing Adjacent Values   870

HT 1	 Working with Streams  871

WE 1	 Word Properties 
© Alex Slobodkin/iStockphoto.WE 2	 A Movie Database 

© Alex Slobodkin/iStockphoto.

GRAPHICAL USER
INTERFACES  883

20.1	 Layout Management   884

Using Layout Managers   884

Achieving Complex Layouts   885
Using Inheritance to Customize Frames   886

ST 1	 Adding the main Method to the
Frame Class  888

20.2	 Processing Text Input   888

Text Fields   888
Text Areas   891

20.3	 Choices   894

Radio Buttons   894
Check Boxes   895
Combo Boxes   896

HT 1	 Laying Out a User Interface  901

WE 1	 Programming a Working Calculator 
© Alex Slobodkin/iStockphoto.20.4	 Menus   905

20.5	 Exploring the Swing Documentation   911

ADVANCED INPUT/OUTPUT 
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

21.1	 Readers, Writers, and Input/Output Streams

21.2	 Binary Input and Output

21.3	 Random Access

21.4	 Object Input and Output Streams
HT 1	 Choosing a File Format

21.5	 File and Directory Operations
Paths 
Creating and Deleting Files and Directories 
Useful File Operations 
Visiting Directories 

MULTITHREADING 
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

22.1	 Running Threads
ST 1	 Thread Pools

22.2	 Terminating Threads

22.3	 Race Conditions

22.4	 Synchronizing Object Access

22.5	 Avoiding Deadlocks
ST 2	 Object Locks and Synchronized Methods

ST 3	 The Java Memory Model

22.6	 APPLICATION  Algorithm Animation

19

20

21

22

xxii  Contents 

INTERNET NETWORKING 
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

23.1	 The Internet Protocol

23.2	 Application Level Protocols

23.3	 A Client Program

23.4	 A Server Program
HT 1	 Designing Client/Server Programs

23.5	 URL Connections

RELATIONAL DATABASES 
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

24.1	 Organizing Database Information
Database Tables 
Linking Tables 
Implementing Multi-Valued Relationships

ST 1	 Primary Keys and Indexes

24.2	 Queries
Simple Queries 
Selecting Columns 
Selecting Subsets 
Calculations 
Joins 
Updating and Deleting Data 

24.3	 Installing a Database

24.4	 Database Programming in Java

Connecting to the Database 
Executing SQL Statements 
Analyzing Query Results 
Result Set Metadata 

24.5	 APPLICATION  Entering an Invoice
ST 2	 Transactions

ST 3	 Object-Relational Mapping

WE 1	 Programming a Bank Database

XML  (WEB ONLY) 
© Alex Slobodkin/iStockphoto.

25.1	 XML Tags and Documents
Advantages of XML 
Differences Between XML and HTML
The Structure of an XML Document 

HT 1	 Designing an XML Document Format

25.2	 Parsing XML Documents

25.3	 Creating XML Documents
HT 2	 Writing an XML Document

ST 1	 Grammars, Parsers, and Compilers

25.4	 Validating XML Documents
Document Type Definitions 
Specifying a DTD in an XML Document 
Parsing and Validation 

HT 3	 Writing a DTD

ST 2	 Schema Languages

ST 3	 Other XML Technologies

WEB APPLICATIONS 
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

26.1	 The Architecture of a Web Application

26.2	 The Architecture of a JSF Application
JSF Pages 
Managed Beans 
Separation of Presentation and Business Logic 
Deploying a JSF Application 

ST 1	 Session State and Cookies

26.3	 JavaBeans Components

26.4	 Navigation Between Pages
HT 1	 Designing a Managed Bean

26.5	 JSF Components

26.6	 APPLICATION  A Three-Tier Application
ST 2	 AJAX

Appendix A	 THE BASIC LATIN AND LATIN-1 SUBSETS
OF UNICODE    A-1

Appendix B	 JAVA OPERATOR SUMMARY   A-5

Appendix C	 JAVA RESERVED WORD SUMMARY   A-7

Appendix D	 THE JAVA LIBRARY   A-9

Appendix E	 JAVA LANGUAGE CODING
GUIDELINES   A-39

Appendix F	 TOOL SUMMARY   
© Alex Slobodkin/iStockphoto.Appendix G	 NUMBER SYSTEMS   

© Alex Slobodkin/iStockphoto.Appendix H	 UML SUMMARY   
© Alex Slobodkin/iStockphoto.Appendix I	 JAVA SYNTAX SUMMARY   

© Alex Slobodkin/iStockphoto.Appendix J	 HTML SUMMARY   
© Alex Slobodkin/iStockphoto.

GLOSSARY   G-1

INDEX   I-1

CREDITS   C-1

23

24

25

26

Contents  xxiii

ALPHABETICAL LIST OF   SYNTAX BOXES

Arrays    309
Array Lists    343
Assignment    39

Calling a Superclass Method   433
Cast   141
Catching Exceptions    542
Class Declaration   87
Comparisons    184
Constant Declaration   134
Constructor with Superclass Initializer   438

Declaring a Generic Class   826
Declaring a Generic Method   830
Declaring an Interface   468

for Statement    250

if Statement    180
Implementing an Interface   469
Importing a Class from a Package   52
Input Statement    145
Instance Variable Declaration   81

Java Program   12

Lambda Expressions   855

Object Construction   47

Package Specification   401

Subclass Declaration   430

The Enhanced for Loop   318
The instanceof Operator   453
The throws Clause   545
The try-with-resources Statement   545
Throwing an Exception   540
Two-Dimensional Array Declaration   337

while Statement   239

Variable Declaration   35

xxiv  Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© Alex Slobodkin/iStockphoto.

  Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.
© Alex Slobodkin/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

1	 Introduction Omitting Semicolons	 13

Misspelling Words	 15

Describing an Algorithm
with Pseudocode	 19

Writing an Algorithm for
Tiling a Floor	 21

2	Using Objects Using Undeclared or
Uninitialized Variables	 40

Confusing Variable Declarations and
Assignment Statements 	 40

Trying to Invoke a Constructor Like
a Method	 48

How Many Days Have You
Been Alive?	

© Alex Slobodkin/iStockphoto.Working with Pictures	
© Alex Slobodkin/iStockphoto.

3	 Implementing Classes Declaring a Constructor as void 	 90

Ignoring Parameter Variables	 96

Duplicating Instance Variables
in Local Variables	 106

Providing Unnecessary
Instance Variables	 106

Forgetting to Initialize Object
References in a Constructor	 107

Implementing a Class	 96

Making a Simple Menu	
© Alex Slobodkin/iStockphoto.Drawing Graphical Shapes	 114

4	Fundamental
Data Types

Unintended Integer Division	 142

Unbalanced Parentheses	 142

Carrying out Computations	 149

Computing the Volume and
Surface Area of a Pyramid	

© Alex Slobodkin/iStockphoto.Computing Travel Time	
© Alex Slobodkin/iStockphoto.

5	Decisions A Semicolon After the
if Condition	 182

Using == to Compare Strings	 189

The Dangling else Problem	 201

Combining Multiple
Relational Operators	 212

Confusing && and || Conditions	 212

Implementing an
if Statement	 190

Extracting the Middle	
© Alex Slobodkin/iStockphoto.

6	Loops Don’t Think “Are We There Yet?”	 243

Infinite Loops	 244

Off-by-One Errors	 244

Writing a Loop	 272

Credit Card Processing	
© Alex Slobodkin/iStockphoto.Manipulating the Pixels

in an Image	
© Alex Slobodkin/iStockphoto.Debugging	 285

A Sample Debugging Session	
© Alex Slobodkin/iStockphoto.

Special Features  xxv

© Alex Slobodkin/iStockphoto.

  Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

© subjug/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Backup Copies 	 10

Computers Are Everywhere	 5

Choose Descriptive
Variable Names	 41

Learn By Trying 	 45

Don’t Memorize—Use
Online Help	 53

Testing Classes in an Interactive
Environment	 54

Computer Monopoly  	 58

The javadoc Utility	 90 Calling One Constructor
from Another	 110

Electronic Voting Machines	 102

Do Not Use Magic Numbers	 137

Spaces in Expressions	 143

Reading Exception Reports	 160

Big Numbers	 136

© subjug/iStockphoto.

Avoiding Negative
Remainders 	 143

Combining Assignment
and Arithmetic	 143

Instance Methods and
Static Methods	 143

Using Dialog Boxes for Input
and Output	 160

The Pentium Floating-Point
Bug 	 144

International Alphabets
and Unicode 	 161

Brace Layout	 181

Always Use Braces	 181

Tabs	 182

Avoid Duplication in Branches	 183

Hand-Tracing	 200

Make a Schedule and Make Time
for Unexpected Problems	 208

The Conditional Operator	 182

The switch Statement	 196

Block Scope	 201

Enumeration Types	 203

Logging	 208

Short-Circuit Evaluation of
Boolean Operators	 213

De Morgan’s Law	 213

Denver’s Luggage
Handling System	 192

Artificial Intelligence	 217

Use for Loops for Their
Intended Purpose Only	 255

Choose Loop Bounds That
Match Your Task	 256

Count Iterations	 256

Flowcharts for Loops	 259

Variables Declared in a
for Loop Header	 257

Redirection of Input and Output	 262

The Loop-and-a-Half Problem	 262

The break and continue
Statements	 263

Digital Piracy	 249

The First Bug	 287

xxvi  Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© Alex Slobodkin/iStockphoto.

  Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.
© Alex Slobodkin/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Use Arrays for Sequences of
Related Items	 314

Make Parallel Arrays into
Arrays of Objects	 314

Batch Files and Shell Scripts	 354

Methods with a Variable
Number of Arguments	 315

Sorting with the Java Library	 327

Two-Dimensional Arrays
with Variable Row Lengths	 341

Multidimensional Arrays	 343

The Diamond Syntax	 352

Computer Viruses	 316

The Therac-25 Incidents	 355

Consistency	 381

Minimize the Use of
Static Methods	 393

Call by Value and Call
by Reference	 382

Alternative Forms of Instance
and Static Variable Initialization	394

Static Imports	 395

Package Access	 403

Personal Computing  	 407

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior	 428

Calling the Superclass
Constructor	 438

Dynamic Method Lookup and
the Implicit Parameter 	 442

Abstract Classes 	 443

Final Methods and Classes 	 444

Protected Access 	 444

Inheritance and the
toString Method 	 455

Inheritance and the
equals Method 	 456

Who Controls the Internet?	 456

Comparing Integers and Floating-
Point Numbers	 478

Don’t Use a Container
as a Listener	 499

Constants in Interfaces	 473

© subjug/iStockphoto.

Static Methods in Interfaces 	 473

© subjug/iStockphoto.

Default Methods 	 473

© subjug/iStockphoto.

Conflicting Default Methods 	 474

The clone Method and the
Cloneable Interface	 479

© subjug/iStockphoto.

Lambda Expressions 	 485

Generic Interface Types	 486

Anonymous Classes	 488

© subjug/iStockphoto.

Lambda Expressions
for Event Handling 	 496

Keyboard Events	 506

Event Adapters	 506

Open Source and
Free Software	 507

Throw Early, Catch Late	 548

Do Not Squelch Exceptions	 548

Do Throw Specific
Exceptions	 548

Reading Web Pages	 523

File Dialog Boxes	 523

Character Encodings	 524

Regular Expressions	 532

Reading an Entire File	 533

Assertions	 549

The try/finally Statement	 549

Encryption Algorithms	 539

The Ariane Rocket Incident	 554

Common
Errors

How Tos
 and

Worked Examples

7	Arrays and Array Lists Bounds Errors 	 314

Uninitialized and
Unfilled Arrays	 314

Underestimating the
Size of a Data Set	 327

Length and Size	 352

Working with Arrays	 330

Rolling the Dice	
© Alex Slobodkin/iStockphoto.A World Population Table	
© Alex Slobodkin/iStockphoto.

8	Designing Classes Trying to Access Instance
Variables in Static Methods	 394

Confusing Dots	 403

Programming with Packages	 404

9	 Inheritance Replicating Instance Variables from
the Superclass	 432

Confusing Super- and
Subclasses	 432

Accidental Overloading	 437

Forgetting to Use super
When Invoking a
Superclass Method	 437

Don’t Use Type Tests 	 454

Developing an
Inheritance Hierarchy	 445

Implementing an
Employee Hierarchy for
Payroll Processing	

© Alex Slobodkin/iStockphoto.

10	 Interfaces Forgetting to Declare Implementing
Methods as Public	 472

Trying to Instantiate an Interface	 472

Modifying Parameter Types in the
Implementing Method	 495

Trying to Call Listener Methods 	 495

Forgetting to Attach a Listener	 498

Forgetting to Repaint	 502

Investigating Number
Sequences	

© Alex Slobodkin/iStockphoto.

11	 Input/Output and
Exception Handling

Backslashes in File Names	 523

Constructing a Scanner
with a String	 523

Processing Text Files 	 536

Analyzing Baby Names 	
© Alex Slobodkin/iStockphoto.

Special Features  xxvii

© Alex Slobodkin/iStockphoto.

  Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

© subjug/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Use Arrays for Sequences of
Related Items	 314

Make Parallel Arrays into
Arrays of Objects	 314

Batch Files and Shell Scripts	 354

Methods with a Variable
Number of Arguments	 315

Sorting with the Java Library	 327

Two-Dimensional Arrays
with Variable Row Lengths	 341

Multidimensional Arrays	 343

The Diamond Syntax	 352

Computer Viruses	 316

The Therac-25 Incidents	 355

Consistency	 381

Minimize the Use of
Static Methods	 393

Call by Value and Call
by Reference	 382

Alternative Forms of Instance
and Static Variable Initialization	394

Static Imports	 395

Package Access	 403

Personal Computing  	 407

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior	 428

Calling the Superclass
Constructor	 438

Dynamic Method Lookup and
the Implicit Parameter 	 442

Abstract Classes 	 443

Final Methods and Classes 	 444

Protected Access 	 444

Inheritance and the
toString Method 	 455

Inheritance and the
equals Method 	 456

Who Controls the Internet?	 456

Comparing Integers and Floating-
Point Numbers	 478

Don’t Use a Container
as a Listener	 499

Constants in Interfaces	 473

© subjug/iStockphoto.

Static Methods in Interfaces 	 473

© subjug/iStockphoto.

Default Methods 	 473

© subjug/iStockphoto.

Conflicting Default Methods 	 474

The clone Method and the
Cloneable Interface	 479

© subjug/iStockphoto.

Lambda Expressions 	 485

Generic Interface Types	 486

Anonymous Classes	 488

© subjug/iStockphoto.

Lambda Expressions
for Event Handling 	 496

Keyboard Events	 506

Event Adapters	 506

Open Source and
Free Software	 507

Throw Early, Catch Late	 548

Do Not Squelch Exceptions	 548

Do Throw Specific
Exceptions	 548

Reading Web Pages	 523

File Dialog Boxes	 523

Character Encodings	 524

Regular Expressions	 532

Reading an Entire File	 533

Assertions	 549

The try/finally Statement	 549

Encryption Algorithms	 539

The Ariane Rocket Incident	 554

xxviii  Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© Alex Slobodkin/iStockphoto.

  Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.
© Alex Slobodkin/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

12	 Object-Oriented Design Using CRC Cards and
UML Diagrams in
Program Design	 572

Simulating an Automatic
Teller Machine	

© Alex Slobodkin/iStockphoto.

13	 Recursion Infinite Recursion	 598

Tracing Through Recursive
Methods	 598

Thinking Recursively 	 599

Finding Files	
© Alex Slobodkin/iStockphoto.Towers of Hanoi	
© Alex Slobodkin/iStockphoto.

14	 Sorting and Searching The compareTo Method Can
Return Any Integer,
Not Just –1, 0, and 1	 666

Enhancing the Insertion
Sort Algorithm	

© Alex Slobodkin/iStockphoto.

15	 The Java Collections
Framework

Choosing a Collection	 694

Word Frequency	
© Alex Slobodkin/iStockphoto.Simulating a Queue of

Waiting Customers 	
© Alex Slobodkin/iStockphoto.

16	 Basic Data Structures Implementing a Doubly-
Linked List 	

© Alex Slobodkin/iStockphoto.

17	 Tree Structures Building a Huffman Tree	
© Alex Slobodkin/iStockphoto.Implementing a Red-Black Tree	
© Alex Slobodkin/iStockphoto.

18	 Generic Classes Genericity and Inheritance	 833

The Array Store Exception	 833

Using Generic Types in a
Static Context	 838

Making a Generic Binary
Search Tree Class	

© Alex Slobodkin/iStockphoto.

19	 Stream Processing Don’t Use a Terminated Stream 	 854

Optional Results Without Values 	861

Don’t Apply Mutations in
Parallel Stream Operations 	 863

Working with Streams 	 871

Word Properties	
© Alex Slobodkin/iStockphoto.A Movie Database	
© Alex Slobodkin/iStockphoto.

20	 Graphical User
Interfaces

By Default, Components Have
Zero Width and Height	 887

Laying Out a User Interface	 901

Programming a Working
Calculator	

© Alex Slobodkin/iStockphoto.

Special Features  xxix

© Alex Slobodkin/iStockphoto.

  Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

© subjug/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Attributes and Methods in
UML Diagrams	 573

Multiplicities	 574

Aggregation, Association,
and Composition	 574

Databases and Privacy	 586

The Limits of Computation	 612

Oh, Omega, and Theta	 644

Insertion Sort	 645

The Quicksort Algorithm	 652

The Comparator Interface	 666

© subjug/iStockphoto.

Comparators with
Lambda Expressions 	 667

The First Programmer	 658

Use Interface References to
Manipulate Data Structures	 691 © subjug/iStockphoto.

Updating Map Entries 	 694

Hash Functions	 696

Reverse Polish Notation	 709

Standardization	 686

Static Classes	 736

Open Addressing	 755

Wildcard Types	 834

Reflection	 838

One Stream Operation Per Line 	 851

Keep Lambda Expressions Short 	 856

Infinite Streams 	 851

Method and Constructor
References 	 857

Higher-Order Functions 	 858

Higher-Order Functions
and Comparators 	 859

Use a GUI Builder	 904 Adding the main Method
to the Frame Class	 888

xxx  Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© Alex Slobodkin/iStockphoto.

  Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.
© Alex Slobodkin/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

21	 Advanced
Input/Output
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

Negative byte Values	
© Alex Slobodkin/iStockphoto.

Choosing a File Format	
© Alex Slobodkin/iStockphoto.

22	 Multithreading
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

Calling await Without
Calling signalAll	

© Alex Slobodkin/iStockphoto.Calling signalAll Without
Locking the Object	

© Alex Slobodkin/iStockphoto.

23	 Internet Networking
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

Designing Client/Server
Programs	

© Alex Slobodkin/iStockphoto.

24	 Relational Databases
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

Joining Tables Without Specifying
a Link Condition	

© Alex Slobodkin/iStockphoto.Constructing Queries from
Arbitrary Strings	

© Alex Slobodkin/iStockphoto.

Programming a
Bank Database	

© Alex Slobodkin/iStockphoto.

25	 XML
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

XML Elements Describe Objects,
Not Classes	

© Alex Slobodkin/iStockphoto.

Designing an XML
Document Format	

© Alex Slobodkin/iStockphoto.Writing an XML Document	
© Alex Slobodkin/iStockphoto.Writing a DTD	
© Alex Slobodkin/iStockphoto.

26	 Web Applications
(WEB ONLY) 

© Alex Slobodkin/iStockphoto.

Designing a Managed Bean	
© Alex Slobodkin/iStockphoto.

Special Features  xxxi

© Alex Slobodkin/iStockphoto.

  Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

© subjug/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Use the Runnable Interface	
© Alex Slobodkin/iStockphoto.Check for Thread Interruptions

in the run Method of a Thread	
© Alex Slobodkin/iStockphoto.

Thread Pools	
© Alex Slobodkin/iStockphoto.Object Locks and

Synchronized Methods	
© Alex Slobodkin/iStockphoto.The Java Memory Model	
© Alex Slobodkin/iStockphoto.

Use High-Level Libraries	
© Alex Slobodkin/iStockphoto.

Stick with the Standard	
© Alex Slobodkin/iStockphoto.Avoid Unnecessary Data

Replication	
© Alex Slobodkin/iStockphoto.Don’t Replicate Columns

in a Table	
© Alex Slobodkin/iStockphoto.Don’t Hardwire Database

Connection Parameters
into Your Program	

© Alex Slobodkin/iStockphoto.Let the Database Do the Work	
© Alex Slobodkin/iStockphoto.

Primary Keys and Indexes	
© Alex Slobodkin/iStockphoto.Transactions	
© Alex Slobodkin/iStockphoto.Object-Relational Mapping	
© Alex Slobodkin/iStockphoto.

Prefer XML Elements
over Attributes	

© Alex Slobodkin/iStockphoto.Avoid Children with Mixed
Elements and Text	

© Alex Slobodkin/iStockphoto.

Grammars, Parsers,
and Compilers	

© Alex Slobodkin/iStockphoto.Schema Languages	
© Alex Slobodkin/iStockphoto.Other XML Technologies	
© Alex Slobodkin/iStockphoto.

Session State and Cookies	
© Alex Slobodkin/iStockphoto.AJAX	
© Alex Slobodkin/iStockphoto.

1C H A P T E R

1

INTRODUCTION

To learn about computers
and programming

To compile and run your first Java program

To recognize compile-time and run-time errors

To describe an algorithm with pseudocode

CHAPTER GOALS

CHAPTER CONTENTS

1.1  COMPUTER PROGRAMS  2

1.2  THE ANATOMY OF A COMPUTER  3

C&S 	 Computers Are Everywhere  5

1.3  THE JAVA PROGRAMMING
LANGUAGE  6

1.4  BECOMING FAMILIAR WITH YOUR
PROGRAMMING ENVIRONMENT  7

PT 1 	 Backup Copies  10

1.5  ANALYZING YOUR FIRST
PROGRAM  11

SYN 	 Java Program  12
CE 1 	 Omitting Semicolons  13

1.6  ERRORS  14

CE 2 	 Misspelling Words  15

1.7  PROBLEM SOLVING:
ALGORITHM DESIGN  15

HT 1 	 Describing an Algorithm with
Pseudocode  19

WE 1 	 Writing an Algorithm for Tiling
a Floor  21

© JanPietruszka/iStockphoto.

© JanPietruszka/iStockphoto.

2

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. After a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
Java program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your computer programs.

1.1  Computer Programs
You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much narrower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and peripheral devices are collectively
called the hardware. The programs the computer executes are called the software.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

•	 Put a red dot at a given screen position.
•	 Add up two numbers.
•	 If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophisticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in simple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

Computers execute
very basic
instructions in
rapid succession.

A computer program
is a sequence
of instructions
and decisions.

Programming is the
act of designing and
implementing
computer programs.

© JanPietruszka/iStockphoto.

© JanPietruszka/iStockphoto.

1.2  The Anatomy of a Computer   3

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.	 What is required to play music on a computer?
2.	 Why is a CD player less flexible than a computer?
3.	 What does a computer user need to know about programming in order to play a

video game?

1.2  The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central
processing unit (CPU) (see Figure 1). The inside
wiring of the CPU is enormously complicated.
For example, the Intel Core processor (a popular
CPU for personal computers at the time of this
writing) is composed of several hundred million
structural elements, called transistors.

The CPU performs program control and
data processing. That is, the CPU locates and
executes the program instructions; it carries out
arithmetic operations such as addition, subtrac-
tion, multiplication, and division; it fetches data
from external memory or devices and places
processed data into storage.

There are two kinds of storage. Primary stor-
age, or memory, is made from electronic circuits that can store data, provided they are
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2)
or a solid-state drive, provides slower and less expensive storage that persists without

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© Amorphis/iStockphoto.

Figure 1  Central Processing Unit

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

Figure 2  A Hard Disk
© PhotoDisc, Inc./Getty Images, Inc.

©
 A

m
or

ph
is

/iS
to

ck
ph

ot
o.

P
ho

to
D

is
c,

 I
nc

./G
et

ty
 I

m
ag

es
, I

nc
.

4  Chapter 1  Introduction

electricity. A hard disk consists of rotating platters, which are coated with a magnetic
material. A solid-state drive uses electronic components that can retain information
without power, and without moving parts.

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits information (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and
executes one instruction at a time. As directed by these instructions, the CPU reads
data, modifies it, and writes it back to memory or secondary storage. Some program
instructions will cause the CPU to place dots on the display screen or printer or to
vibrate the speaker. As these actions happen many times over and at great speed, the
human user will perceive images and sound. Some program instructions read user
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction.

Figure 3  Schematic Design of a Personal Computer

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk
controller

Secondary storage

Monitor

Speakers

Internet
Network
controller

1.2  The Anatomy of a Computer   5

4.	 Where is a program stored when it is not currently running?

5.	 Which part of the computer carries out arithmetic operations, such as addition
and multiplication?

6.	 A modern smartphone is a computer, comparable to a desktop computer. Which
components of a smartphone correspond to those shown in Figure 3?

Practice It	 Now you can try these exercises at the end of the chapter: R1.2, R1.3.

Computing & Society 1.1  Computers Are Everywhere

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

When computers
were first invented

in the 1940s, a computer filled an
entire room. The photo below shows
the ENIAC (electronic numerical inte-
grator and computer), completed in
1946 at the University of Pennsylvania.
The ENIAC was used by the military to
compute the trajectories of projectiles.
Nowadays, computing facilities of
search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today
carried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies nowadays are often
consumed on comput-
ers, and computers are
almost always involved
in their production. The book that you
are reading right now could not have

been written without computers.
Knowing about computers and

how to program them has become
an essential skill in many careers.
Engineers design computer-controlled
cars and medical equipment that
preserve lives. Computer scientists
develop programs that help people
come together to support social
causes. For example, activists used
social networks to share videos
showing abuse by repressive regimes,
and this information was instrumental
in changing public opinion.

As computers, large and small,
become ever more embedded in our
everyday lives, it is increasingly impor-
tant for everyone to understand how
they work, and how to work with them.
As you use this book to learn how to
program a computer, you will develop
a good understanding of computing
fundamentals that will make you a
more informed citizen and, perhaps,
a computing professional.

© Media Bakery.

© Maurice Savage/Alamy Limited.
This transit card contains a computer.

© UPPA/Photoshot.

The ENIAC

©
 M

au
ri

ce
 S

av
ag

e/
A

la
m

y
L

im
it

ed
.

©
 U

P
PA

/P
ho

to
sh

ot
.

6  Chapter 1  Introduction

1.3  The Java Programming Language
In order to write a computer program, you need to provide a sequence of instructions
that the CPU can execute. A computer program consists of a large number of simple
CPU instructions, and it is tedious and error-prone to specify them one by one. For
that reason, high-level programming languages have been created. In a high-level
language, you specify the actions that your program should carry out. A compiler
translates the high-level instructions into the more detailed instructions (called
machine code)required by the CPU. Many different programming languages have
been designed for different purposes.

In 1991, a group led by James Gosling and Patrick Naughton at Sun Microsystems
designed a programming language, code-named “Green”, for use in consumer
devices, such as intelligent television “set-top” boxes. The language was designed to
be simple, secure, and usable for many different processor types. No customer was
ever found for this technology.

Gosling recounts that in 1994 the team realized,
“We could write a really cool browser. It was one
of the few things in the client/server mainstream
that needed some of the weird things we’d done:
architecture neutral, real-time, reliable, secure.”
Java was introduced to an enthusiastic crowd at
the SunWorld exhibition in 1995, together with a
browser that ran applets—Java code that can be
located anywhere on the Internet. The figure at
right shows a typical example of an applet.

Since then, Java has grown at a phenomenal rate.
Programmers have embraced the language because
it is easier to use than its closest rival, C++. In addition, Java has a rich library that
makes it possible to write portable programs that can bypass proprietary operating
systems—a feature that was eagerly sought by those who wanted to be independent
of those proprietary systems and was bitterly fought by their vendors. A “micro edi-
tion” and an “enterprise edition” of the Java library allow Java programmers to target
hardware ranging from smart cards to the largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for beginners: safety and portability.

Table 1 Java Versions (since Version 1.0 in 1996)

Version Year Important New Features Version Year Important New Features

1.1 1997 Inner classes 5 2004 Generic classes, enhanced for loop,
auto-boxing, enumerations,

annotations

1.2 1998 Swing, Collections framework 6 2006 Library improvements

1.3 2000 Performance enhancements 7 2011 Small language changes and library
improvements

1.4 2002 Assertions, XML support 8 2014 Function expressions, streams, new
date/time library

© James Sullivan/Getty Images.

James Gosling

An Applet for Visualizing Molecules

Java was originally
designed for
programming
consumer devices,
but it was first
successfully used
to write Internet
applets.

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

Ja
m

es
 S

ul
liv

an
/G

et
ty

 I
m

ag
es

.

1.4  Becoming Familiar with Your Programming Environment   7

Java was designed so that anyone can execute programs in their browser without
fear. The safety features of the Java language ensure that a program is terminated if it
tries to do something unsafe. Having a safe environment is also helpful for anyone
learning Java. When you make an error that results in unsafe behavior, your program
is terminated and you receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine,
a program that simulates a real CPU. Portability is another benefit for the beginning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose programming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to
making it really simple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for pro-
fessional programmers, but it can be a nuisance for beginning students. As you learn
how to program in Java, there will be times when you will be asked to be satisfied with
a preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 7 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself
is relatively simple, but Java contains a vast set of library packages that are required
to write useful programs. There are packages for graphics, user-interface design,
cryptography, networking, sound, database storage, and many other purposes. Even
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important packages. Keep in mind that the central goal of this
book is not to make you memorize Java minutiae, but to teach you how to think
about programming.

7.	 What are the two most important benefits of the Java language?
8.	 How long does it take to learn the entire Java library?

Practice It	 Now you can try this exercise at the end of the chapter: R1.5.

1.4  Becoming Familiar with Your
Programming Environment

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can only give an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a tour.

Java programs are
distributed as
instructions for a
virtual machine,
making them
platform-independent.

Java has a very
large library. Focus
on learning those
parts of the library
that you need for
your programming
projects.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Set aside time to
become familiar with
the programming
environment that
you will use for your
class work.

8  Chapter 1  Introduction

Step 1	

Figure 4 
Running the
HelloPrinter
Program in an
Integrated
Development
Environment

Java program

Program output

Click to compile and run

Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch an editor, a program that functions like a word
processor, in which you can enter your Java instructions; you then open a console
window and type commands to execute your program. You need to find out how to
get started with your environment.

Step 2	 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that displays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” program in Java:

public class HelloPrinter
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program statements into an editor window.
Create a new file and call it HelloPrinter.java, using the steps that are appropriate

for your environment. (If your environment requires that you supply a project name
in addition to the file name, use the name hello for the project.) Enter the program
instructions exactly as they are given above. Alternatively, locate the electronic copy
in this book’s companion code and paste it into your editor.

An editor is a
program for entering
and modifying text,
such as a Java
program.

1.4  Becoming Familiar with Your Programming Environment   9

Figure 5 
Running the HelloPrinter
Program in a Console Window

As you write this program, pay careful attention to the various symbols, and keep
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not
careful, you will run into problems—see Common Error 1.2 on page 15.

Step 3	 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 4 and 5).
In order to run your program, the Java compiler translates your source files (that

is, the statements that you wrote) into class files. (A class file contains instructions for
the Java virtual machine.) After the compiler has translated your source code into
virtual machine instructions, the virtual machine executes them. During execution,
the virtual machine accesses a library of pre-written code, including the implementa-
tions of the System and PrintStream classes that are necessary for displaying the pro-
gram’s output. Figure 6 summarizes the process of creating and running a Java pro-
gram. In some programming environments, the compiler and virtual machine are
essentially invisible to the programmer—they are automatically executed whenever
you ask to run a Java program. In other environments, you need to launch the com-
piler and virtual machine explicitly.

Step 4	 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store
your programs in files. Files are stored in folders or directories. A folder can contain

Java is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

The Java compiler
translates source
code into class files
that contain
instructions for the
Java virtual machine.

Figure 6 
From Source Code
to Running Program

CompilerEditor Virtual
Machine

Running
ProgramSource File

Class �les

Library �les

10  Chapter 1  Introduction

files as well as other folders, which themselves can contain more files and folders (see
Figure 7). This hierarchy can be quite large, and you need not be concerned with all of
its branches. However, you should create folders for organizing your work. It is a
good idea to make a separate folder for your programming coursework. Inside that
folder, make a separate folder for each program.

Some programming environments place your programs into a default location if
you don’t specify a folder yourself. In that case, you need to find out where those files
are located.

Be sure that you understand where your files are located in the folder hierarchy.
This information is essential when you submit files for grading, and for making
backup copies (see Programming Tip 1.1).

9.	 Where is the HelloPrinter.java file stored on your computer?
10.	 What do you do to protect yourself from data loss when you work on program-

ming projects?

Practice It	 Now you can try this exercise at the end of the chapter: R1.6.

Backup Copies

You will spend many hours creating and improving Java programs. It is
easy to delete a file by accident, and occasionally files are lost because
of a computer malfunction. Retyping the contents of lost files is frus-
trating and time-consuming. It is therefore crucially important that
you learn how to safeguard files and get in the habit of doing so before
disaster strikes. Backing up files on a memory stick is an easy and convenient storage method
for many people. Another increasingly popular form of backup is Internet file storage. Here
are a few pointers to keep in mind:

•	 Back up often. Backing up a file takes only a few seconds, and
you will hate yourself if you have to spend many hours
recreating work that you could have saved easily. I recommend
that you back up your work once every thirty minutes.

•	 Rotate backups. Use more than one directory for backups, and rotate them. That is, first
back up onto the first directory. Then back up onto the second directory. Then use the
third, and then go back to the first. That way you always have three recent backups. If
your recent changes made matters worse, you can then go back to the older version.

•	 Pay attention to the backup direction. Backing up involves copying files from one place to
another. It is important that you do this right—that is, copy from your work location to
the backup location. If you do it the wrong way, you will overwrite a newer file with an
older version.

•	 Check your backups once in a while. Double-check that your backups are where you think
they are. There is nothing more frustrating than to find out that the backups are not there
when you need them.

•	 Relax, then restore. When you lose a file and need to restore it from a backup, you are
likely to be in an unhappy, nervous state. Take a deep breath and think through the
recovery process before you start. It is not uncommon for an agitated computer user to
wipe out the last backup when trying to restore a damaged file.

Figure 7 
A Folder Hierarchy

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Programming Tip 1.1

© Eric Isselé/iStockphoto.

© Tatiana Popova/iStockphoto.

Develop a strategy for
keeping backup copies
of your work before
disaster strikes.

©
 T

at
ia

na
 P

op
ov

a/
iS

to
ck

ph
ot

o.

1.5  Analyzing Your First Program   11

1.5  Analyzing Your First Program
In this section, we will analyze the first Java program in detail. Here again is the
source code:

section_5/HelloPrinter.java

1 public class HelloPrinter
2 {
3 public static void main(String[] args)
4 {
5 // Display a greeting in the console window
6
7 System.out.println("Hello, World!");
8 }
9 }

The line
public class HelloPrinter

indicates the declaration of a class called HelloPrinter.
Every Java program consists of one or more classes. We will discuss classes in more

detail in Chapters 2 and 3.
The word public denotes that the class is usable by the “public”. You will later

encounter private features.
In Java, every source file can contain at most one public class, and the name of the

public class must match the name of the file containing the class. For example, the
class HelloPrinter must be contained in a file named HelloPrinter.java.

The construction

public static void main(String[] args)
{
 . . .
}

declares a method called main. A method contains a collection of programming
instructions that describe how to carry out a particular task. Every Java application
must have a main method. Most Java programs contain other methods besides main,
and you will see in Chapter 3 how to write other methods.

The term static is explained in more detail in Chapter 8, and the meaning of
String[] args is covered in Chapter 11. At this time, simply consider

public class ClassName
{
 public static void main(String[] args)
 {
 . . .
 }
}

as a part of the “plumbing” that is required to create a Java program. Our first pro-
gram has all instructions inside the main method of the class.

The main method contains one or more instructions called statements. Each state-
ment ends in a semicolon (;). When a program runs, the statements in the main method
are executed one by one.

© Amanda Rohde/iStockphoto.

Classes are the
fundamental
building blocks of
Java programs.

Every Java
application contains
a class with a main
method. When the
application starts,
the instructions in
the main method
are executed.

Each class contains
declarations of
methods. Each
method contains
a sequence
of instructions.

©
 A

m
an

da
 R

oh
de

/iS
to

ck
ph

ot
o.

12  Chapter 1  Introduction

Syntax 1.1	 Java Program

public class HelloPrinter
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

Every program contains at least one class.
Choose a class name that describes
the program action.

The statements inside the
main method are executed
when the program runs.

Every Java program
contains a main method
with this header.

Replace this
statement when you

write your own
programs.

Be sure to match the
opening and closing braces.

Each statement
ends in a semicolon.
 See page 13.

In our example program, the main method has a single statement:
System.out.println("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. In this statement, we call
a method which, for reasons that we will not explain here, is specified by the rather
long name System.out.println.

We do not have to implement this method—the programmers who wrote the Java
library already did that for us. We simply want the method to perform its intended
task, namely to print a value.

Whenever you call a method in Java, you need to specify

1.	The method you want to use (in this case, System.out.println).
2.	Any values the method needs to carry out its task (in this case, "Hello, World!").

The technical term for such a value is an argument. Arguments are enclosed in
parentheses. Multiple arguments are separated by commas.

A sequence of characters enclosed in quotation marks
"Hello, World!"

is called a string. You must enclose the contents of the string inside quotation marks
so that the compiler knows you literally mean "Hello, World!". There is a reason for
this requirement. Suppose you need to print the word main. By enclosing it in quota-
tion marks, "main", the compiler knows you mean the sequence of characters m a i n,
not the method named main. The rule is simply that you must enclose all text strings
in quotation marks, so that the compiler considers them plain text and does not try to
interpret them as program instructions.

You can also print numerical values. For example, the statement
System.out.println(3 + 4);

evaluates the expression 3 + 4 and displays the number 7.

A method is called
by specifying the
method and
its arguments.

A string is a sequence
of characters
enclosed in
quotation marks.

1.5  Analyzing Your First Program   13

The System.out.println method prints a string or a number and then starts a new
line. For example, the sequence of statements

System.out.println("Hello");
System.out.println("World!");

prints two lines of text:
Hello
World!

There is a second method, System.out.print, that you can use to print an item without
starting a new line. For example, the output of the two statements

System.out.print("00");
System.out.println(3 + 4);

is the single line
007

11.	 How do you modify the HelloPrinter program to greet you instead?
12.	 How would you modify the HelloPrinter program to print the word “Hello”

vertically?
13.	 Would the program continue to work if you replaced line 7 with this statement?

System.out.println(Hello);

14.	 What does the following set of statements print?
System.out.print("My lucky number is");
System.out.println(3 + 4 + 5);

15.	 What do the following statements print?
System.out.println("Hello");
System.out.println("");
System.out.println("World");

Practice It	 Now you can try these exercises at the end of the chapter: R1.7, R1.8, E1.5, E1.8.

Omitting Semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a common
error. It confuses the compiler, because the compiler uses the semicolon to find where one
statement ends and the next one starts. The compiler does not use line breaks or closing braces
to recognize the end of statements. For example, the compiler considers

System.out.println("Hello")
System.out.println("World!");

a single statement, as if you had written

System.out.println("Hello") System.out.println("World!");

Then it doesn’t understand that statement, because it does not expect the word System follow-
ing the closing parenthesis after "Hello".

The remedy is simple. Scan every statement for a terminating semicolon, just as you would
check that every English sentence ends in a period. However, do not add a semicolon at the
end of public class Hello or public static void main. These lines are not statements.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to
download a program
to demonstrate print
commands.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Common Error 1.1

© John Bell/iStockphoto.

14  Chapter 1  Introduction

1.6  Errors
Experiment a little with the HelloPrinter program.
What happens if you make a typing error such as

System.ou.println("Hello, World!");
System.out.println("Hello, Word!");

In the first case, the compiler will complain. It will
say that it has no clue what you mean by ou. The
exact wording of the error message is dependent
on your development environment, but it might be
something like “Cannot find symbol ou”. This is a
compile-time error. Something is wrong accord
ing to the rules of the language and the compiler
finds it. For this reason, compile-time errors are
often called syntax errors. When the compiler
finds one or more errors, it refuses to translate the program into Java virtual machine
instructions, and as a consequence you have no program that you can run. You must
fix the error and compile again. In fact, the compiler is quite picky, and it is common
to go through several rounds of fixing compile-time errors before compilation suc-
ceeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to
report as many errors as it can find, so you can fix them all at once.

Sometimes, an error throws the compiler off track. Suppose, for example, you
forget the quotation marks around a string: System.out.println(Hello, World!). The
compiler will not complain about the missing quotation marks. Instead, it will report
“Cannot find symbol Hello”. Unfortunately, the compiler is not very smart and it
does not realize that you meant to use a string. It is up to you to realize that you need
to enclose strings in quotation marks.

The error in the second line above is of a different kind. The program will compile
and run, but its output will be wrong. It will print

Hello, Word!

This is a run-time error. The program is syntactically correct and does something,
but it doesn’t do what it is supposed to do. Because run-time errors are caused by
logical flaws in the program, they are often called logic errors.

This particular run-time error did not include an error message. It simply pro-
duced the wrong output. Some kinds of run-time errors are so severe that they gen-
erate an exception: an error message from the Java virtual machine. For example, if
your program includes the statement

System.out.println(1 / 0);

you will get a run-time error message “Division by zero”.
During program development, errors are unavoidable. Once a program is longer

than a few lines, it would require superhuman concentration to enter it correctly
without slipping up once. You will find yourself omitting semicolons or quotation
marks more often than you would like, but the compiler will track down these prob-
lems for you.

Run-time errors are more troublesome. The compiler will not find them—in fact,
the compiler will cheerfully translate any program as long as its syntax is correct—

© Martin Carlsson/iStockphoto.
Programmers spend a fair amount
of time fixing compile-time and run-
time errors.

A compile-time error
is a violation of
the programming
language rules that
is detected by
the compiler.

A run-time error
causes a program to
take an action that
the programmer did
not intend.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load three programs
that illustrate errors.

© Alex Slobodkin/iStockphoto.

©
 M

ar
ti

n
C

ar
ls

so
n/

iS
to

ck
ph

ot
o.

1.7  Problem Solving: Algorithm Design   15

but the resulting program will do something wrong. It is the responsibility of the
program author to test the program and find any run-time errors.

16.	 Suppose you omit the "" characters around Hello, World! from the HelloPrinter.
java program. Is this a compile-time error or a run-time error?

17.	 Suppose you change println to printline in the HelloPrinter.java program. Is this
a compile-time error or a run-time error?

18.	 Suppose you change main to hello in the HelloPrinter.java program. Is this a
compile-time error or a run-time error?

19.	 When you used your computer, you may have experienced a program that
“crashed” (quit spontaneously) or “hung” (failed to respond to your input). Is
that behavior a compile-time error or a run-time error?

20.	 Why can’t you test a program for run-time errors when it has compiler errors?

Practice It	 Now you can try these exercises at the end of the chapter: R1.9, R1.10, R1.11.

Misspelling Words

If you accidentally misspell a word, then strange things may happen, and it may not always be
completely obvious from the error messages what went wrong. Here is a good example of how
simple spelling errors can cause trouble:

public class HelloPrinter
{
 public static void Main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

This class declares a method called Main. The compiler will not consider this to be the same as
the main method, because Main starts with an uppercase letter and the Java language is case sen-
sitive. Upper- and lowercase letters are considered to be completely different from each other,
and to the compiler Main is no better match for main than rain. The compiler will cheerfully
compile your Main method, but when the Java virtual machine reads the compiled file, it will
complain about the missing main method and refuse to run the program. Of course, the mes-
sage “missing main method” should give you a clue where to look for the error.

If you get an error message that seems to indicate that the compiler or virtual machine is on
the wrong track, check for spelling and capitalization. If you misspell the name of a symbol
(for example, ou instead of out), the compiler will produce a message such as “cannot find sym-
bol ou”. That error message is usually a good clue that you made a spelling error.

1.7  Problem Solving: Algorithm Design
You will soon learn how to program calculations and decision making in Java. But
before we look at the mechanics of implementing computations in the next chapter,
let’s consider how you can describe the steps that are necessary for finding the solu-
tion to a problem.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Common Error 1.2

© John Bell/iStockphoto.

16  Chapter 1  Introduction

1.7.1  The Algorithm Concept

You may have run across advertisements that
encourage you to pay for a computerized service
that matches you up with a love partner. Think
how this might work. You fill out a form and send
it in. Others do the same. The data are processed
by a computer program. Is it reasonable to assume
that the computer can perform the task of finding
the best match for you? Suppose your younger
brother, not the computer, had all the forms on his
desk. What instructions could you give him? You
can’t say, “Find the best-looking person who likes
inline skating and browsing the Internet”. There
is no objective standard for good looks, and your
brother’s opinion (or that of a computer program
analyzing the photos of prospective partners) will likely be different from yours. If
you can’t give written instructions for someone to solve the problem, there is no way
the computer can magically find the right solution. The computer can only do what
you tell it to do. It just does it faster, without getting bored or exhausted.

For that reason, a computerized match-making service cannot guarantee to find
the optimal match for you. Instead, you may be presented with a set of potential part-
ners who share common interests with you. That is a task that a computer program
can solve.

In order for a computer program to provide an answer to a problem that computes
an answer, it must follow a sequence of steps that is

•	 Unambiguous
•	 Executable
•	 Terminating

The step sequence is unambiguous when there are precise instructions for what to do
at each step and where to go next. There is no room for guesswork or personal opin-
ion. A step is executable when it can be carried out in practice. For example, a com-
puter can list all people that share your hobbies, but it can’t predict who will be your
life-long partner. Finally, a sequence of steps is terminating if it will eventually come
to an end. A program that keeps working without delivering an answer is clearly not
useful.

A sequence of steps that is unambiguous,
executable, and terminating is called an algorithm.
Although there is no algorithm for finding a part-
ner, many problems do have algorithms for solving
them. The next section gives an example.

An algorithm is a recipe for
finding a solution.

© mammamaart/iStockphoto.
Finding the perfect partner is not a
problem that a computer can solve.

An algorithm for
solving a problem is
a sequence of steps
that is unambiguous,
executable, and
terminating.

© Claudiad/iStockphoto.

©
 m

am
m

am
aa

rt
/iS

to
ck

ph
ot

o.
©

 C
la

ud
ia

d/
iS

to
ck

ph
ot

o.

www.ebook3000.com

http://www.ebook3000.org

1.7  Problem Solving: Algorithm Design   17

1.7.2  An Algorithm for Solving an Investment Problem

Consider the following investment problem:

You put $10,000 into a bank account that earns 5 percent interest per year. How many
years does it take for the account balance to be double the original?

Could you solve this problem by hand? Sure, you could. You figure out the balance
as follows:

 year interest balance
 0 10000
 1 10000.00 x 0.05 = 500.00 10000.00 + 500.00 = 10500.00
 2 10500.00 x 0.05 = 525.00 10500.00 + 525.00 = 11025.00
 3 11025.00 x 0.05 = 551.25 11025.00 + 551.25 = 11576.25
 4 11576.25 x 0.05 = 578.81 11576.25 + 578.81 = 12155.06

You keep going until the balance is at least $20,000. Then the last number in the year
column is the answer.

Of course, carrying out this computation is intensely boring to you or your
younger brother. But computers are very good at carrying out repetitive calcula-
tions quickly and flawlessly. What is important to the computer is a description of the
steps for finding the solution. Each step must be clear and unambiguous, requiring no
guesswork. Here is such a description:

Start with a year value of 0, a column for the interest, and a balance of $10,000.

 year interest balance
 0 10000

Repeat the following steps while the balance is less than $20,000
	 Add 1 to the year value.
	 Compute the interest as balance x 0.05 (i.e., 5 percent interest).
	 Add the interest to the balance.

 year interest balance
 0 10000
 1 500.00 10500.00

 14 942.82 19799.32
 15 989.96 20789.28

Report the final year value as the answer.

These steps are not yet in a language that a computer can understand, but you will
soon learn how to formulate them in Java. This informal description is called pseudo-
code. We examine the rules for writing pseudocode in the next section.

18  Chapter 1  Introduction

1.7.3  Pseudocode

There are no strict requirements for pseudocode because it is read by human readers,
not a computer program. Here are the kinds of pseudocode statements and how we
will use them in this book:

•	 Use statements such as the following to describe how a value is set or changed:
total cost = purchase price + operating cost
Multiply the balance value by 1.05.
Remove the first and last character from the word.

•	 Describe decisions and repetitions as follows:
If total cost 1 < total cost 2
While the balance is less than $20,000
For each picture in the sequence

Use indentation to indicate which statements should be selected or repeated:
For each car
	 operating cost = 10 x annual fuel cost
	 total cost = purchase price + operating cost

Here, the indentation indicates that both statements should be executed for
each car.

•	 Indicate results with statements such as:
Choose car1.
Report the final year value as the answer.

1.7.4  From Algorithms to Programs

In Section 1.7.2, we developed pseudocode for finding how long it takes to double an
investment. Let’s double-check that the pseudocode represents an algorithm; that is,
that it is unambiguous, executable, and terminating.

Our pseudocode is unambiguous. It simply tells how to update values in each step.
The pseudocode is executable because we use a fixed interest rate. Had we said to use
the actual interest rate that will be charged in years to come, and not a fixed rate of 5
percent per year, the instructions would not have been executable. There is no way
for anyone to know what the interest rate will be in the future. It requires a bit of
thought to see that the steps are terminating: With every step, the balance goes up by
at least $500, so eventually it must reach $20,000.

Therefore, we have found an algorithm to solve our investment problem, and
we know we can find the solution by programming a computer. The existence of
an algorithm is an essential prerequisite for programming a task. You need to first
discover and describe an algorithm for the task before you start programming (see
Figure 8). In the chapters that follow, you will learn how to express algorithms in the
Java language.

Figure 8  The Software Development Process

Pseudocode is an
informal description
of a sequence of
steps for solving
a problem.

Understand
the problem

Develop and
describe an
algorithm

Translate
the algorithm

into Java

Test the
algorithm with
simple inputs

Compile and test
your program

1.7  Problem Solving: Algorithm Design   19

21.	 Suppose the interest rate was 20 percent. How long would it take for the invest-
ment to double?

22.	 Suppose your cell phone carrier charges you $29.95 for up to 300 minutes of
calls, and $0.45 for each additional minute, plus 12.5 percent taxes and fees. Give
an algorithm to compute the monthly charge from a given number of minutes.

23.	 Consider the following pseudocode for finding the most attractive photo from a
sequence of photos:

Pick the first photo and call it "the best so far".
For each photo in the sequence
	 If it is more attractive than the "best so far"
		 Discard "the best so far".
		 Call this photo "the best so far".
The photo called "the best so far" is the most attractive photo in the sequence.
Is this an algorithm that will find the most attractive photo?

24.	 Suppose each photo in Self Check 23 had a price tag. Give an algorithm for find-
ing the most expensive photo.

25.	 Suppose you have a random sequence of black and white marbles and want to
rearrange it so that the black and white marbles are grouped together. Consider
this algorithm:

Repeat until sorted
	 Locate the first black marble that is preceded by a white marble, and switch them.
What does the algorithm do with the sequence mlmll? Spell out the steps
until the algorithm stops.

26.	 Suppose you have a random sequence of colored marbles. Consider this pseudo-
code:

Repeat until sorted
	 Locate the first marble that is preceded by a marble of a different color, and switch them.
Why is this not an algorithm?

Practice It	 Now you can try these exercises at the end of the chapter: R1.16, E1.4, P1.1.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© Steve Simzer/iStockphoto.

How To 1.1	 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code––a sequence of precise steps formulated in English. To illustrate, we’ll devise an algo-
rithm for this problem:

Problem Statement  You have the choice of buying one
of two cars. One is more fuel efficient than the other, but also
more expensive. You know the price and fuel efficiency (in miles
per gallon, mpg) of both cars. You plan to keep the car for ten
years. Assume a price of $4 per gallon of gas and usage of 15,000
miles per year. You will pay cash for the car and not worry about
financing costs. Which car is the better deal?

© dlewis33/iStockphoto.

©
 d

le
w

is
33

/iS
to

ck
ph

ot
o.

20  Chapter 1  Introduction

Step 1	 Determine the inputs and outputs.

In our sample problem, we have these inputs:
•	 purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car
•	 purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

Step 2	 Break down the problem into smaller tasks.

For each car, we need to know the total cost of driving it. Let’s do this computation separately
for each car. Once we have the total cost for each car, we can decide which car is the better deal.

The total cost for each car is purchase price + operating cost.

We assume a constant usage and gas price for ten years, so the operating cost depends on the
cost of driving the car for one year.

The operating cost is 10 x annual fuel cost.
The annual fuel cost is price per gallon x annual fuel consumed.

The annual fuel consumed is annual miles driven / fuel efficiency. For example, if you drive the car
for 15,000 miles and the fuel efficiency is 15 miles/gallon, the car consumes 1,000 gallons.

Step 3	 Describe each subtask in pseudocode.

In your description, arrange the steps so that any intermediate values are computed before
they are needed in other computations. For example, list the step

total cost = purchase price + operating cost
after you have computed operating cost.

Here is the algorithm for deciding which car to buy:

For each car, compute the total cost as follows:
	 annual fuel consumed = annual miles driven / fuel efficiency
	 annual fuel cost = price per gallon x annual fuel consumed
	 operating cost = 10 x annual fuel cost
	 total cost = purchase price + operating cost
If total cost1 < total cost2
	 Choose car1.
Else
	 Choose car2.

Step 4	 Test your pseudocode by working a problem.

We will use these sample values:

Car 1: $25,000, 50 miles/gallon
Car 2: $20,000, 30 miles/gallon

Here is the calculation for the cost of the first car:

annual fuel consumed = annual miles driven / fuel efficiency = 15000 / 50 = 300
annual fuel cost = price per gallon x annual fuel consumed = 4 x 300 = 1200
operating cost = 10 x annual fuel cost = 10 x 1200 = 12000
total cost = purchase price + operating cost = 25000 + 12000 = 37000

Similarly, the total cost for the second car is $40,000. Therefore, the output of the algorithm is
to choose car 1.

1.7  Problem Solving: Algorithm Design   21

The following Worked Example demonstrates how to use the concepts in this chap-
ter and the steps in the How To to solve another problem. In this case, you will see
how to develop an algorithm for laying tile in an alternating pattern of colors. You
should read the Worked Example to review what you have learned, and for help in
tackling another problem.

In future chapters, Worked Examples are provided for you on the book’s compan-
ion Web site. A brief description of the problem tackled in the example will appear
with a reminder to download it from www.wiley.com/go/bjeo6examples. You will find any
code related to the Worked Example included with the book’s companion code for
the chapter. When you see the Worked Example description, download the example
and the code to learn how the problem was solved.

Step 1	 Determine the inputs and outputs.

The inputs are the floor dimensions (length × width),
measured in inches. The output is a tiled floor.

Step 2	 Break down the problem into smaller tasks.

A natural subtask is to lay one row of tiles. If you can
solve that task, then you can solve the problem by lay
ing one row next to the other, starting from a wall, until
you reach the opposite wall.

How do you lay a row? Start with a tile at one wall.
If it is white, put a black one next to it. If it is black, put
a white one next to it. Keep going until you reach the
opposite wall. The row will contain width / 4 tiles.

Step 3	 Describe each subtask in pseudocode.

In the pseudocode, you want to be more precise about exactly where the tiles are placed.

Place a black tile in the northwest corner.
While the floor is not yet filled, repeat the following steps:
	 Repeat this step width / 4 – 1 times:
		 Place a tile east of the previously placed tile. If the previously placed tile was white, pick a black one;

		 otherwise, a white one.
	 Locate the tile at the beginning of the row that you just placed. If there is space to the south, place a tile of

the opposite color below it.

Step 4	 Test your pseudocode by working a problem.

Suppose you want to tile an area measuring 20 × 12 inches. The first step is to place a black tile
in the northwest corner.

1
20 inches

12

© Tom Horyn/iStockphoto.

Worked Example 1.1	 Writing an Algorithm for Tiling a Floor

Problem Statement  Write an algorithm for tiling a rectangular bathroom floor with
alternating black and white tiles measuring 4 × 4 inches. The floor dimensions, measured in
inches, are multiples of 4.

© rban/iStockphoto.

©
 r

ba
n/

iS
to

ck
ph

ot
o.

22  Chapter 1  Introduction

Next, alternate four tiles until reaching the east wall. (width / 4 – 1 = 20 / 4 – 1 = 4)

1 2 3 4 5

There is room to the south. Locate the tile at the beginning of the completed row. It is black.
Place a white tile south of it.

1

6

2 3 4 5

Complete the row.

1

6

2 3 4 5

7 8 9 10

There is still room to the south. Locate the tile at the beginning of the completed row. It is
white. Place a black tile south of it.

1

6

2 3 4 5

11

7 8 9 10

Complete the row.

1

6

2 3 4 5

11 12 13 14 15

7 8 9 10

Now the entire floor is filled, and you are done.

Define “computer program” and programming.

•	 Computers execute very basic instructions in rapid succession.
•	 A computer program is a sequence of instructions and decisions.
•	 Programming is the act of designing and implementing computer programs.

Describe the components of a computer.

•	 The central processing unit (CPU) performs program control and data
processing.

•	 Storage devices include memory and secondary storage.

C H A P T E R S U M M A R Y

© Amorphis/iStockphoto.

Chapter Summary  23

Describe the process of translating high-level languages to machine code.

•	 Java was originally designed for programming consumer devices, but it was first
successfully used to write Internet applets.

•	 Java was designed to be safe and portable, benefiting both Internet users and
students.

•	 Java programs are distributed as instructions for a virtual machine, making them
platform-independent.

•	 Java has a very large library. Focus on learning those parts of the library that you
need for your programming projects.

Become familiar with your Java programming environment.

•	 Set aside time to become familiar with the programming environment that you
will use for your class work.

•	 An editor is a program for entering and modifying text, such as a Java program.
•	 Java is case sensitive. You must be careful about distinguishing between upper-

and lowercase letters.
•	 The Java compiler translates source code into class files that contain instructions

for the Java virtual machine.
•	 Develop a strategy for keeping backup copies of your

work before disaster strikes.

Describe the building blocks of a simple program.

•	 Classes are the fundamental building blocks of Java programs.
•	 Every Java application contains a class with a main method. When the application

starts, the instructions in the main method are executed.
•	 Each class contains declarations of methods. Each method contains a sequence of

instructions.
•	 A method is called by specifying the method and its arguments.
•	 A string is a sequence of characters enclosed in quotation marks.

Classify program errors as compile-time and run-time errors.

•	 A compile-time error is a violation of the programming language rules that is
detected by the compiler.

•	 A run-time error causes a program to take an action that the programmer did
not intend.

Write pseudocode for simple algorithms.

•	 An algorithm for solving a problem is a sequence of steps that
is unambiguous, executable, and terminating.

•	 Pseudocode is an informal description of a sequence of steps
for solving a problem.

© James Sullivan/Getty Images.

© Tatiana Popova/iStockphoto.

© Amanda Rohde/iStockphoto.

© Martin Carlsson/iStockphoto.

© Claudiad/iStockphoto.

24  Chapter 1  Introduction

• R1.1	 Explain the difference between using a computer program and programming a
computer.

• R1.2	 Which parts of a computer can store program code? Which can store user data?

• R1.3	 Which parts of a computer serve to give information to the user? Which parts take
user input?

•• R1.4	 A toaster is a single-function device, but a computer can be programmed to carry out
different tasks. Is your cell phone a single-function device, or is it a programmable
computer? (Your answer will depend on your cell phone model.)

•• R1.5	 Explain two benefits of using Java over machine code.

•• R1.6	 On your own computer or on a lab computer, find the exact location (folder or
directory name) of

a.	The sample file HelloPrinter.java, which you wrote with the editor.
b.	The Java program launcher java.exe or java.
c.	The library file rt.jar that contains the run-time library.

•• R1.7	 What does this program print?
public class Test
{
 public static void main(String[] args)
 {
 System.out.println("39 + 3");
 System.out.println(39 + 3);
 }
}

•• R1.8	 What does this program print? Pay close attention to spaces.
public class Test
{
 public static void main(String[] args)
 {
 System.out.print("Hello");
 System.out.println("World");
 }
}

•• R1.9	 What is the compile-time error in this program?
public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Hello", "World!");
 }
}

java.io.PrintStream
 print
 println

java.lang.System
 out

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

R E V I E W E X E R C I S E S

Practice Exercises  25

•• R1.10	 Write three versions of the HelloPrinter.java program that have different compile-
time errors. Write a version that has a run-time error.

• R1.11	 How do you discover syntax errors? How do you discover logic errors?

••• R1.12	 The cafeteria offers a discount card for sale that entitles you, during a certain period,
to a free meal whenever you have bought a given number of meals at the regular
price. The exact details of the offer change from time to time. Describe an algorithm
that lets you determine whether a particular offer is a good buy. What other inputs
do you need?

•• R1.13	 Write an algorithm to settle the following question: A bank account starts out with
$10,000. Interest is compounded monthly at 6 percent per year (0.5 percent per
month). Every month, $500 is withdrawn to meet college expenses. After how many
years is the account depleted?

••• R1.14	 Consider the question in Exercise R1.13. Suppose the numbers ($10,000, 6 percent,
$500) were user selectable. Are there values for which the algorithm you developed
would not terminate? If so, change the algorithm to make sure it always terminates.

••• R1.15	 In order to estimate the cost of painting a house, a painter needs to know the surface
area of the exterior. Develop an algorithm for computing that value. Your inputs are
the width, length, and height of the house, the number of windows and doors, and
their dimensions. (Assume the windows and doors have a uniform size.)

•• R1.16	 In How To 1.1, you made assumptions about the price of gas and annual usage to
compare cars. Ideally, you would like to know which car is the better deal without
making these assumptions. Why can’t a computer program solve that problem?

•• R1.17	 Suppose you put your younger brother in charge of backing up your work. Write a
set of detailed instructions for carrying out his task. Explain how often he should do
it, and what files he needs to copy from which folder to which location. Explain how
he should verify that the backup was carried out correctly.

• R1.18	 Write pseudocode for an algorithm that describes how to prepare Sunday breakfast
in your household.

•• R1.19	 The ancient Babylonians had an algorithm for determining the square root of a num-
ber a. Start with an initial guess of a / 2. Then find the average of your guess g and
a / g. That’s your next guess. Repeat until two consecutive guesses are close enough.
Write pseudocode for this algorithm.

• E1.1	 Write a program that prints a greeting of your choice, perhaps in a language other
than English.

•• E1.2	 Write a program that prints the sum of the first ten positive integers, 1 + 2 + … + 10.

•• E1.3	 Write a program that prints the product of the first ten positive integers, 1 × 2 × … ×
10. (Use * to indicate multiplication in Java.)

•• E1.4	 Write a program that prints the balance of an account after the first, second, and third
year. The account has an initial balance of $1,000 and earns 5 percent interest per year.

• E1.5	 Write a program that displays your name inside a box on the screen, like this: Dave
Do your best to approximate lines with characters such as | - +.

P R A C T I C E E X E R C I S E S

26  Chapter 1  Introduction

••• E1.6	 Write a program that prints your name in large letters, such as
* * ** **** **** * *
* * * * * * * * * *
***** * * **** **** * *
* * ****** * * * * *
* * * * * * * * *

•• E1.7	 Write a program that prints your name in Morse code, like this:
.... .- .-. .-. -.--

 Use a separate call to System.out.print for each letter.

•• E1.8	 Write a program that prints a face similar to (but different from) the following:
 /////
 +"""""+
 (| o o |)
 | ^ |
 | '-' |
 +-----+

•• E1.9	 Write a program that prints an imitation of a Piet Mondrian painting. (Search the
Internet if you are not familiar with his paintings.) Use character sequences such as
@@@ or ::: to indicate different colors, and use - and | to form lines.

•• E1.10	 Write a program that prints a house that looks exactly like the following:
 +
 + +
 + +
 +-----+
 | .-. |
 | | | |
 +-+-+-+

••• E1.11	 Write a program that prints an animal speaking a greeting, similar to (but different
from) the following:

 /_/\ -----
(' ') / Hello \
(-) < Junior |
 | | | \ Coder!/
(__|__) -----

• E1.12	 Write a program that prints three items, such as the names of your three best friends
or favorite movies, on three separate lines.

• E1.13	 Write a program that prints a poem of your choice. If you don’t have a favorite
poem, search the Internet for “Emily Dickinson” or “e e cummings”.

•• E1.14	 Write a program that prints the United States flag, using * and = characters.

•• E1.15	 Type in and run the following program. Then modify it to show the message “Hello,
your name!”.

import javax.swing.JOptionPane;

public class DialogViewer
{
 public static void main(String[] args)
 {
 JOptionPane.showMessageDialog(null, "Hello, World!");

Practice Exercises  27

 }
}

•• E1.16	 Type in and run the following program. Then modify it to print “Hello, name!”,
displaying the name that the user typed in.

import javax.swing.JOptionPane;

public class DialogViewer
{
 public static void main(String[] args)
 {
 String name = JOptionPane.showInputDialog("What is your name?");
 System.out.println(name);
 }
}

••• E1.17	 Modify the program from Exercise E1.16 so that the dialog continues with the mes-
sage “My name is Hal! What would you like me to do?” Discard the user’s input and
display a message such as

I'm sorry, Dave. I'm afraid I can't do that.

Replace Dave with the name that was provided by the user.

•• E1.18	 Type in and run the following program. Then modify it to show a different greeting
and image.

import java.net.URL;
import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class Test
{
 public static void main(String[] args) throws Exception
 {
 URL imageLocation = new URL(
 "http://horstmann.com/java4everyone/duke.gif");
 JOptionPane.showMessageDialog(null, "Hello", "Title",
 JOptionPane.PLAIN_MESSAGE, new ImageIcon(imageLocation));
 }
}

• Business E1.19	 Write a program that prints a two-column list of your friends’ birthdays. In the first
column, print the names of your best friends; in the second, print their birthdays.

• Business E1.20	 In the United States there is no federal sales tax, so every state
may impose its own sales taxes. Look on the Internet for the
sales tax charged in five U.S. states, then write a program that
prints the tax rate for five states of your choice.

• Business E1.21	 To speak more than one language is a valuable
skill in the labor market today. One of the basic
skills is learning to greet people. Write a program
that prints a two-column list with the greeting
phrases shown in the table. In the first column,
print the phrase in English, in the second col-
umn, print the phrase in a language of your
choice. If you don’t speak a language other than
English, use an online translator or ask a friend.

Sales Tax Rates

Alaska: 0%
Hawaii: 4%
. . .

List of Phrases to Translate

Good morning.

It is a pleasure to meet you.

Please call me tomorrow.

Have a nice day!

28  Chapter 1  Introduction

•• P1.1	 You want to decide whether you should drive your car to work or take the train.
You know the one-way distance from your home to your place of work, and the
fuel efficiency of your car (in miles per gallon). You also know the one-way price
of a train ticket. You assume the cost of gas at $4 per gallon, and car maintenance at
5 cents per mile. Write an algorithm to decide which commute is cheaper.

•• P1.2	 You want to find out which fraction of your car’s use is for commuting to work,
and which is for personal use. You know the one-way distance from your home to
work. For a particular period, you recorded the beginning and ending mileage on the
odometer and the number of work days. Write an algorithm to settle this question.

••• P1.3	 The value of π can be computed according to the following formula:

π
4

1
1
3

1
5

1
7

1
9

= − + − + − …

Write an algorithm to compute π. Because the formula is an infinite series and an
algorithm must stop after a finite number of steps, you should stop when you have
the result determined to six significant digits.

• Business P1.4	 Imagine that you and a number of friends go to a luxury restaurant, and when you
ask for the bill you want to split the amount and the tip (15 percent) between all.
Write pseudocode for calculating the amount of money that everyone has to pay.
Your program should print the amount of the bill, the tip, the total cost, and the
amount each person has to pay. It should also print how much of what each person
pays is for the bill and for the tip.

•• P1.5	 Write an algorithm to create a tile pattern composed of black
and white tiles, with a fringe of black tiles all around and
two or three black tiles in the center, equally spaced from the
boundary. The inputs to your algorithm are the total number
of rows and columns in the pattern.

••• P1.6	 Write an algorithm that allows a robot to mow a rectangu-
lar lawn, provided it has been placed in a corner, like this:
The robot can:

•	 Move forward by one unit.
•	 Turn left or right.
•	 Sense the color of the ground one unit in front of it.

••• P1.7	 Consider a robot that is placed in a room. The robot can:
•	 Move forward by one unit.
•	 Turn left or right.
•	 Sense what is in front of it: a wall, a window, or

neither.
Write an algorithm that enables the robot, placed any-
where in the room, to count the number of windows. For
example, in the room at right, the robot (marked as R)
should find that it has two windows.

P R O G R A M M I N G P R O J E C T S

R

R

Answers to Self-Check Questions  29

••• P1.8	 Consider a robot that has been placed in a maze. The right-hand rule tells you how
to escape from a maze: Always have the right hand next to a wall, and eventually you
will find an exit. The robot can:

•	 Move forward by one unit.
•	 Turn left or right.
•	 Sense what is in front of it: a wall, an exit, or neither.

Write an algorithm that lets the robot escape the maze. You may assume that there is
an exit that is reachable by the right-hand rule. Your challenge is to deal with situa-
tions in which the path turns. The robot can’t see turns. It can only see what is
directly in front of it.

••• Business P1.9	 Suppose you received a loyalty promotion that lets you purchase one item, valued
up to $100, from an online catalog. You want to make the best of the offer. You have
a list of all items for sale, some of which are less than $100, some more. Write an
algorithm to produce the item that is closest to $100. If there is more than one such
item, list them all. Remember that a computer will inspect one item at a time––it
can’t just glance at a list and find the best one.

•• Science P1.10	 A television manufacturer advertises that a televi-
sion set has a certain size, measured diagonally.
You wonder how the set will fit into your living
room. Write an algorithm that yields the horizontal
and vertical size of the television. Your inputs are
the diagonal size and the aspect ratio (the ratio of
width to height, usually 16 : 9 for television sets).

••• Science P1.11	 Cameras today can correct “red eye” problems caused
when the photo flash makes eyes look red. Write pseudo-
code for an algorithm that can detect red eyes. Your input is
a pattern of colors, such as that at right.
You are given the number of rows and columns. For any
row or column number, you can query the color, which will
be red, black, or something else. If you find that the center
of the black pixels coincides with the center of the red
pixels, you have found a red eye, and your output should
be “yes”. Otherwise, your output is “no”.

© Skip ODonnell/iStockphoto.

© Don Bayley/iStockPhoto.

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 A program that reads the data on the CD and
sends output to the speakers and the screen.

2.	 A CD player can do one thing—play music
CDs. It cannot execute programs.

3.	 Nothing.
4.	 In secondary storage, typically a hard disk.
5.	 The central processing unit.

6.	 A smartphone has a CPU and memory, like
any computer. A few smartphones have key-
boards. Generally, the touchpad is used instead
of a mouse. Secondary storage is in the form
of a solid state drive. Of course, smartphones
have a display, speaker, and microphone. The
network connection uses the wireless radio to
connect to a cell tower.

©
 S

ki
p

O
D

on
ne

ll/
iS

to
ck

ph
ot

o.

©
 D

on
 B

ay
le

y/
iS

to
ck

ph
ot

o.

30  Chapter 1  Introduction

7.	 Safety and portability.
8.	 No one person can learn the entire library—it

is too large.
9.	 The answer varies among systems. A typical

answer might be /home/dave/cs1/hello/Hello-
Printer.java or c:\Users\Dave\Workspace\hello\
HelloPrinter.java

10.	 You back up your files and folders.
11.	 Change World to your name (here, Dave):

System.out.println("Hello, Dave!");

12.	 System.out.println("H");
System.out.println("e");
System.out.println("l");
System.out.println("l");
System.out.println("o");

13.	 No. The compiler would look for an
item whose name is Hello. You need to
enclose Hello in quotation marks:
System.out.println("Hello");

14.	 The printout is My lucky number is12. It would
be a good idea to add a space after the is.

15.	 Hello
a blank line
World

16.	 This is a compile-time error. The compiler
will complain that it does not know the mean-
ings of the words Hello and World.

17.	 This is a compile-time error. The compiler
will complain that System.out does not have a
method called printline.

18.	 This is a run-time error. It is perfectly legal to
give the name hello to a method, so the com-
piler won’t complain. But when the program
is run, the virtual machine will look for a main
method and won’t find one.

19.	 It is a run-time error. After all, the program
had been compiled in order for you to run it.

20.	 When a program has compiler errors, no class
file is produced, and there is nothing to run.

21.	 4 years:
0 10,000
1 12,000
2 14,400
3 17,280
4 20,736

22.	 Is the number of minutes at most 300?
a.	If so, the answer is $29.95 × 1.125 = $33.70.
b.	If not,

1.	Compute the difference: (number of
minutes) – 300.

2.	Multiply that difference by 0.45.
3.	Add $29.95.
4.	Multiply the total by 1.125. That is the

answer.
23.	 No. The step If it is more attractive than the "best

so far" is not executable because there is no
objective way of deciding which of two pho-
tos is more attractive.

24.	 Pick the first photo and call it "the most expensive so far".
For each photo in the sequence
	 If it is more expensive than "the most expensive so far"
		 Discard "the most expensive so far".
		 Call this photo "the most expensive so far".
The photo called "the most expensive so far" is the most

expensive photo in the sequence.

25.	 The first black marble that is preceded by a
white one is marked in blue:
mlmm●●

Switching the two yields
lmmll

The next black marble to be switched is
lmmll

yielding
lmlml

The next steps are
llmml

llmlm

lllmm

Now the sequence is sorted.
26.	 The sequence doesn’t terminate. Consider the

input mlmlm. The first two marbles keep
getting switched.

2C H A P T E R

31

© Lisa F. Young/iStockphoto.

USING OBJECTS

To learn about variables

To understand the concepts of classes
and objects

To be able to call methods

To learn about arguments and return values

To be able to browse the API documentation

To implement test programs

To understand the difference between objects and object references

To write programs that display simple shapes

CHAPTER GOALS

CHAPTER CONTENTS

2.1  OBJECTS AND CLASSES  32

2.2  VARIABLES  34

SYN 	 Variable Declaration  35
SYN 	 Assignment  39
CE 1 	 Using Undeclared or Uninitialized

Variables  40
CE 2 	 Confusing Variable Declarations and

Assignment Statements  40
PT 1 	 Choose Descriptive Variable Names  41

2.3  CALLING METHODS  41

PT 2 	 Learn By Trying  45

2.4  CONSTRUCTING OBJECTS  46

SYN 	 Object Construction  47
CE 3 	 Trying to Invoke a Constructor Like a

Method  48

2.5  ACCESSOR AND MUTATOR
METHODS  48

2.6  THE API DOCUMENTATION  50

SYN 	 Importing a Class from a Package  52
PT 3 	 Don’t Memorize—Use Online Help  53

2.7  IMPLEMENTING A TEST PROGRAM  53

ST 1 	 Testing Classes in an Interactive
Environment  54

WE 1 	 How Many Days Have You Been Alive? 
© Alex Slobodkin/iStockphoto.WE 2 	 Working with Pictures 

© Alex Slobodkin/iStockphoto.
2.8  OBJECT REFERENCES  55

C&S 	 Computer Monopoly  58

2.9  GRAPHICAL APPLICATIONS  59

2.10  ELLIPSES, LINES, TEXT,
AND COLOR  64

© Lisa F. Young/iStockphoto.

32

Most useful programs don’t just manipulate numbers and
strings. Instead, they deal with data items that are more
complex and that more closely represent entities in the real
world. Examples of these data items include bank accounts,
employee records, and graphical shapes.

The Java language is ideally suited for designing and
manipulating such data items, or objects. In Java, you
implement classes that describe the behavior of these
objects. In this chapter, you will learn how to manipulate
objects that belong to classes that have already been
implemented. This will prepare you for the next chapter, in
which you will learn how to implement your own classes.

2.1  Objects and Classes
When you write a computer program, you put
it together from certain “building blocks”. In
Java, you build programs from objects. Each
object has a particular behavior, and you can
manipulate it to achieve certain effects.

As an analogy, think of a home builder who
constructs a house from certain parts: doors,
windows, walls, pipes, a furnace, a water heater,
and so on. Each of these elements has a particu-
lar function, and they work together to fulfill a
common purpose. Note that the home builder
is not concerned with how to build a window or
a water heater. These elements are readily avail-
able, and the builder’s job is to integrate them
into the house.

Of course, computer programs are more
abstract than houses, and the objects that make
up a computer program aren’t as tangible as a
window or a water heater. But the analogy
holds well: A programmer produces a working
program from elements with the desired functionality—the objects. In this chapter,
you will learn the basics about using objects written by other programmers.

2.1.1  Using Objects

An object is an entity that you can manipulate by calling one or more of its methods.
A method consists of a sequence of instructions that can access the internal data of
an object. When you call the method, you do not know exactly what those instruc-
tions are, or even how the object is organized internally. However, the behavior of the
method is well defined, and that is what matters to us when we use it.

© Luc Meaille/iStockphoto.Each part that a home builder uses,
such as a furnace or a water heater,
fulfills a particular function. Similarly,
you build programs from objects, each
of which has a particular behavior.

Objects are entities
in your program that
you manipulate by
calling methods.

© Lisa F. Young/iStockphoto.

©
 L

uc
 M

ea
ill

e/
iS

to
ck

ph
ot

o.

© Lisa F. Young/iStockphoto.

2.1  Objects and Classes   33

Figure 1  Representation of the System.out Object

data =

PrintStream

println

print

10101110

11110110

01101011

00110101

The class that the
System.out object belongs to

Methods you can
call on System.out

The object’s internal data

For example, you saw in Chapter 1 that System.out refers to an object. You
manipulate it by calling the println method. When the println method is called, some
activities occur inside the object, and the ultimate effect is that text appears in the con-
sole window. You don’t know how that happens, and that’s OK. What matters is that
the method carries out the work that you requested.

Figure 1 shows a representation of the System.out object. The internal data is sym-
bolized by a sequence of zeroes and ones. Think of each method (symbolized by the
gears) as a piece of machinery that carries out its assigned task.

In general, think of an object as an entity that can do work for you when you call
its methods. How the work is done is not important to the programmer using the
object.

In the remainder of this chapter, you will see other objects
and the methods that they can carry out.

You can think of a water heater as an object that can carry out the “get
hot water” method. When you call that method to enjoy a hot shower,

you don’t care whether the water heater uses gas or solar power.

2.1.2  Classes

In Chapter 1, you encountered two objects:

•	 System.out

•	 "Hello, World!"

Each of these objects belongs to a different class. The System.out object belongs to
the PrintStream class. The "Hello, World!" object belongs to the String class. Of course,
there are many more String objects, such as "Goodbye" or "Mississippi". They all have
something in common––you can invoke the same methods on all strings. You will see
some of these methods in Section 2.3.

As you will see in Chapter 11, you can construct objects of the PrintStream class
other than System.out. Those objects write data to files or other destinations instead of
the console. Still, all PrintStream objects share common behavior. You can invoke the
println and print methods on any PrintStream object, and the printed values are sent to
their destination.

A method is a
sequence of
instructions that
accesses the data
of an object.

© Steven Frame/iStockphoto.

A class describes
a set of objects with
the same behavior.

©
 S

te
ve

n
Fr

am
e/

iS
to

ck
ph

ot
o.

34  Chapter 2  Using Objects

Of course, the objects of the PrintStream class
have a completely different behavior than the
objects of the String class. You could not call
println on a String object. A string wouldn’t know
how to send itself to a console window or file.

As you can see, different classes have different
responsibilities. A string knows about the letters
that it contains, but it does not know how to dis-
play them to a human or to save them to a file.

1.	 In Java, objects are grouped into classes according to their behavior. Would a
window object and a water heater object belong to the same class or to different
classes? Why?

2.	 Some light bulbs use a glowing filament, others use a fluorescent gas. If you
consider a light bulb a Java object with an “illuminate” method, would you need
to know which kind of bulb it is?

3.	 What actually happens when you try to call the following?
"Hello, World".println(System.out)

Practice It	 Now you can try these exercises at the end of the chapter: R2.1, R2.2.

2.2  Variables
Before we continue with the main topic of this chapter—the behavior of objects—we
need to go over some basic programming terminology. In the following sections, you
will learn about the concepts of variables, types, and assignment.

2.2.1  Variable Declarations

When your program manipulates objects, you will want to store the objects and the
values that their methods return, so that you can use them later. In a Java program,
you use variables to store values. The following statement declares a variable named
width:

int width = 20;

© Arcaid Images/Alamy Inc.
All objects of a Window class share
the same behavior.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Like a variable in a computer
program, a parking space has
an identifier and a contents.

Javier Larrea/Age Fotostock.

©
 A

rc
ai

d
Im

ag
es

/A
la

m
y

In
c.

Ja
vi

er
 L

ar
re

a/
A

ge
 F

ot
os

to
ck

.

2.2  Variables   35

Syntax 2.1	 Variable Declaration

typeName variableName = value;
or
typeName variableName;

Syntax

String greeting = "Hello, Dave!";
A variable declaration ends
with a semicolon.

The type speci	es
what can be done
with values stored
in this variable.

Supplying an initial value is optional,
but it is usually a good idea.

See page 37 for rules and
examples of valid names.

Use a descriptive
 variable name.

 See page 41.

A variable is a storage location in a computer program. Each variable has a name and
holds a value.

A variable is similar to a parking space in a parking garage. The parking space has
an identifier (such as “J 053”), and it can hold a vehicle. A variable has a name (such
as width), and it can hold a value (such as 20). When declaring a variable, you usually
want to initialize it. That is, you specify the value that should be stored in the vari-
able. Consider again this variable declaration:

int width = 20;

The variable width is initialized with the value 20.
Like a parking space that is restricted to a certain type of vehicle (such as a compact

car, motorcycle, or electric vehicle), a variable in Java stores data of a specific type.
Java supports quite a few data types: numbers, text strings, files, dates, and many oth-
ers. You must specify the type whenever you declare a variable (see Syntax 2.1).

The width variable is an integer, a whole number without a fractional part. In Java,
this type is called int.

Note that the type comes before the variable name:
int width = 20;

After you have declared and initialized a variable,
you can use it. For example,

int width = 20;
System.out.println(width);
int area = width * width;

Table 1 shows several examples of variable
declarations.

Each parking space is suitable for a particular type of vehicle,
just as each variable holds a value of a particular type.

A variable is a
storage location
with a name.

When declaring a
variable, you
usually specify an
initial value.

When declaring a
variable, you also
specify the type of
its values.

© Ingenui/iStockphoto.

©
 In

ge
nu

i/i
St

oc
kp

ho
to

.

36  Chapter 2  Using Objects

Table 1 Variable Declarations in Java

Variable Name Comment

int width = 20; Declares an integer variable and initializes it with 20.

int perimeter = 4 * width; The initial value need not be a fixed value. (Of course, width
must have been previously declared.)

String greeting = "Hi!"; This variable has the type String and is initialized with the
string “Hi”.

height = 30; Error: The type is missing. This statement is not a declaration
but an assignment of a new value to an existing variable—see
Section 2.2.5.

int width = "20"; Error: You cannot initialize a number with the string “20”.
(Note the quotation marks.)

int width; Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1 on page 40.

int width, height; Declares two integer variables in a single statement. In this
book, we will declare each variable in a separate statement.

2.2.2  Types

In Java, there are several different types of numbers. You use the int type to denote a
whole number without a fractional part. For example, suppose you count the num-
ber of cars in a parking lot. The counter must be an integer number—you cannot have
a fraction of a car.

When a fractional part is required (such as in the number 22.5), we use floating-
point numbers. The most commonly used type for floating-point numbers in Java is
called double. Here is the declaration of a floating-point variable:

double milesPerGallon = 22.5;

You can combine numbers with the + and - operators, as in width + 10 or width - 1.
To multiply two numbers, use the * operator. For example, 2 × width is written as
2 * width. Use the / operator for division, such as width / 2.

As in mathematics, the * and / operator bind more strongly than the + and - opera-
tors. That is, width + height * 2 means the sum of width and the product height * 2. If
you want to multiply the sum by 2, use parentheses: (width + height) * 2.

Not all types are number types. For example, the value "Hello" has the type String.
You need to specify that type when you define a variable that holds a string:

String greeting = "Hello";

A type specifies the operations that can be carried out with its values.
Types are important because they indicate what you can do with a variable. For

example, consider the variable width. It’s type is int. Therefore, you can multiply the
value that it holds with another number. But the type of greeting is String. You can’t
multiply a string with another number. (You will see in Section 2.3.1 what you can do
with strings.)

Use the int type
for numbers that
cannot have a
fractional part.

Use the double
type for floating-
point numbers.

Numbers can
be combined by
arithmetic operators
such as +, -, and *.

2.2  Variables   37

2.2.3  Names

When you declare a variable, you should pick a name that explains its purpose. For
example, it is better to use a descriptive name, such as milesPerGallon, than a terse
name, such as mpg.

In Java, there are a few simple rules for the names of variables, methods, and classes:

1.	Names must start with a letter or the underscore (_) character, and the remain-
ing characters must be letters, numbers, or underscores. (Technically, the $
symbol is allowed as well, but you should not use it—it is intended for names
that are automatically generated by tools.)

2.	You cannot use other symbols such as ? or %. Spaces
are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
milesPerGallon. This naming convention is called
camel case because the uppercase letters in the
middle of the name look like the humps of a camel.)

3.	Names are case sensitive, that is, milesPerGallon and
milespergallon are different names.

4.	You cannot use reserved words such as double or class as names; these words
are reserved exclusively for their special Java meanings. (See Appendix C for a
listing of all reserved words in Java.)

It is a convention among Java programmers that names of variables and methods
start with a lowercase letter (such as milesPerGallon). Class names should start with an
uppercase letter (such as HelloPrinter). That way, it is easy to tell them apart.

Table 2 shows examples of legal and illegal variable names in Java.

Table 2 Variable Names in Java

Variable Name Comment

distance_1 Names consist of letters, numbers, and the underscore
character.

x In mathematics, you use short variable names such as x or y.
This is legal in Java, but not very common, because it can
make programs harder to understand (see Programming Tip
2.1 on page 41).

! CanVolume Caution: Names are case sensitive. This variable name is
different from canVolume, and it violates the convention that
variable names should start with a lowercase letter.

6pack Error: Names cannot start with a number.

can volume Error: Names cannot contain spaces.

double Error: You cannot use a reserved word as a name.

miles/gal Error: You cannot use symbols such as / in names.

© GlobalP/iStockphoto.

By convention,
variable names
should start with a
lowercase letter.

©
 G

lo
ba

lP
/iS

to
ck

ph
ot

o.

38  Chapter 2  Using Objects

2.2.4  Comments

As your programs get more complex, you should add comments, explanations for
human readers of your code. For example, here is a comment that explains the value
used to initialize a variable:

double milesPerGallon = 35.5; // The average fuel efficiency of new U.S. cars in 2013

This comment explains the significance of the value 35.5 to a human reader. The com-
piler does not process comments at all. It ignores everything from a // delimiter to the
end of the line.

It is a good practice to provide comments. This helps programmers who read your
code understand your intent. In addition, you will find comments helpful when you
review your own programs.

You use the // delimiter for short comments. If you have a longer comment,
enclose it between /* and */ delimiters. The compiler ignores these delimiters and
everything in between. For example,

/*
 In most countries, fuel efficiency is measured in liters per hundred
 kilometer. Perhaps that is more useful—it tells you how much gas you need
 to purchase to drive a given distance. Here is the conversion formula.
*/
double fuelEfficiency = 235.214583 / milesPerGallon;

2.2.5  Assignment

You can change the value of a variable with the assignment operator (=). For example,
consider the variable declaration

int width = 10; 1

If you want to change the value of the variable, simply assign the new value:
width = 20; 2

The assignment replaces the original value of the variable (see Figure 2).

It is an error to use a variable that has never had a value assigned to it. For example,
the following assignment statement has an error:

int height;
int width = height; // ERROR—uninitialized variable height

The compiler will complain about an “uninitialized variable” when you use a vari-
able that has never been assigned a value. (See Figure 3.)

Use comments to
add explanations
for humans who
read your code. The
compiler ignores
comments.

Use the assignment
operator (=) to
change the value
of a variable.

Figure 2 
Assigning a New Value to a Variable

width = 10

width = 20

1

2

Figure 3 
An Uninitialized Variable height =

No value has been assigned.

2.2  Variables   39

Syntax 2.2	 Assignment

variableName = value;Syntax

double width = 20;
 .
 .
width = 30;

 .
 .
 .
width = width + 10;

The value of this variable is changed.

The same name
can occur on both sides.

See Figure 4.

The new value of the variable

This is a variable declaration. This is an assignment statement.

The remedy is to assign a value to the variable before you use it:
int height = 20;
int width = height; // OK

The right-hand side of the = symbol can be a mathematical expression. For example,
width = height + 10;

This means “compute the value of height + 10 and store that value in the variable width”.
In the Java programming language, the = operator denotes an action, namely to

replace the value of a variable. This usage differs from the mathematical usage of the
= symbol as a statement about equality. For example, in Java, the following statement
is entirely legal:

width = width + 10;

This means “compute the value of width + 10 1 and store that value in the variable
width 2 ” (see Figure 4).

In Java, it is not a problem that the variable width is used on both sides of the = sym-
bol. Of course, in mathematics, the equation width = width + 10 has no solution.

All variables must be
initialized before you
access them.

The assignment
operator = does not
denote mathematical
equality.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a program
that demonstrates
variables and
assignments.

© Alex Slobodkin/iStockphoto.

Figure 4 
Executing the Statement
width = width + 10

1

width =

width + 10

40

30

2

width = 40

Compute the value of the right-hand side

Store the value in the variable

40  Chapter 2  Using Objects

4.	 What is wrong with the following variable declaration?
int miles per gallon = 39.4

5.	 Declare and initialize two variables, unitPrice and quantity, to contain the unit
price of a single item and the number of items purchased. Use reasonable initial
values.

6.	 Use the variables declared in Self Check 5 to display the total purchase price.
7.	 What are the types of the values 0 and "0"?
8.	 Which number type would you use for storing the area of a circle?
9.	 Which of the following are legal identifiers?

Greeting1
g
void
101dalmatians
Hello, World
<greeting>

10.	 Declare a variable to hold your name. Use camel case in the variable name.
11.	 Is 12 = 12 a valid expression in the Java language?
12.	 How do you change the value of the greeting variable to "Hello, Nina!"?
13.	 How would you explain assignment using the parking space analogy?

Practice It	 Now you can try these exercises at the end of the chapter: R2.4, R2.5, R2.7.

Using Undeclared or Uninitialized Variables

You must declare a variable before you use it for the first time. For example, the following
sequence of statements would not be legal:

int perimeter = 4 * width; // ERROR: width not yet declared
int width = 20;

In your program, the statements are compiled in order. When the compiler reaches the first
statement, it does not know that width will be declared in the next line, and it reports an error.
The remedy is to reorder the declarations so that each variable is declared before it is used.

A related error is to leave a variable uninitialized:

int width;
int perimeter = 4 * width; // ERROR: width not yet initialized

The Java compiler will complain that you are using a variable that has not yet been given a
value. The remedy is to assign a value to the variable before it is used.

Confusing Variable Declarations and Assignment Statements

Suppose your program declares a variable as follows:

int width = 20;

If you want to change the value of the variable, you use an assignment statement:

width = 30;

It is a common error to accidentally use another variable declaration:

int width = 30; // ERROR—starts with int and is therefore a declaration

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Common Error 2.1

© John Bell/iStockphoto.

Common Error 2.2

© John Bell/iStockphoto.

2.3  Calling Methods   41

But there is already a variable named width. The compiler will complain that you are trying to
declare another variable with the same name.

Choose Descriptive Variable Names

In algebra, variable names are usually just one letter long, such as p or A, maybe with a sub-
script such as p1. You might be tempted to save yourself a lot of typing by using short variable
names in your Java programs:

int a = w * h;

Compare that statement with the following one:

int area = width * height;

The advantage is obvious. Reading width is much easier than reading w and then figuring out
that it must mean “width”.

In practical programming, descriptive variable names are particularly important when pro-
grams are written by more than one person. It may be obvious to you that w stands for width,
but is it obvious to the person who needs to update your code years later? For that matter, will
you yourself remember what w means when you look at the code a month from now?

2.3  Calling Methods
A program performs useful work by calling methods on its objects. In this section, we
examine how to supply values in a method, and how to obtain the result of the method.

2.3.1  The Public Interface of a Class

You use an object by calling its methods. All objects of a given class share a common
set of methods. For example, the PrintStream class provides methods for its objects
(such as println and print). Similarly, the String class provides methods that you can
apply to String objects. One of them is the length method. The length method counts
the number of characters in a string. You can apply that method to any object of type
String. For example, the sequence of statements:

String greeting = "Hello, World!";
int numberOfCharacters = greeting.length();

sets numberOfCharacters to the length of the String object "Hello, World!". After the
instructions in the length method are executed, numberOfCharacters is set to 13. (The quo-
tation marks are not part of the string, and the length method does not count them.)

When calling the length method, you do not supply any values inside the parenthe-
ses. Also note that the length method does not produce any visible output. It returns a
value that is subsequently used in the program.

Let’s look at another method of the String class. When you apply the toUpperCase
method to a String object, the method creates another String object that contains the
characters of the original string, with lowercase letters converted to uppercase. For
example, the sequence of statements

String river = "Mississippi";
String bigRiver = river.toUpperCase();

sets bigRiver to the String object "MISSISSIPPI".

Programming Tip 2.1

© Eric Isselé/iStockphoto.

42  Chapter 2  Using Objects

The String class declares many other
methods besides the length and toUpper-
Case methods—you will learn about many
of them in Chapter 4. Collectively,
the methods form the public interface of
the class, telling you what you can do
with the objects of the class. A class also
declares a private implementation,
describing the data inside its objects and
the instructions for its methods. Those
details are hidden from the programmers
who use objects and call methods.

Figure 5 shows two objects of the
String class. Each object stores its own
data (drawn as boxes that contain characters). Both objects support the same set of
methods—the public interface that is specified by the String class.

2.3.2  Method Arguments

Most methods require values that give details about the work that the method needs
to do. For example, when you call the println method, you must supply the string that
should be printed. Computer scientists use the technical term argument for method
inputs. We say that the string greeting is an argument of the method call

System.out.println(greeting);

Figure 6 illustrates passing the argument to the method.

The public interface
of a class specifies
what you can do
with its objects.
The hidden imple
mentation describes
how these actions
are carried out.

© Damir Cudic/iStockphoto.

The controls of a car form its public interface.
The private implementation is under the hood.

Figure 5  A Representation of Two String Objects

length

toUpperCase

H e l l o ...

String

data =

length

toUpperCase

String

M i s s i ...data =

An argument is a
value that is supplied
in a method call.

Figure 6  Passing an Argument to the println Method

PrintStream

println

print

10101110

11110110

01101011

00110101

"Hello, World"

©
 D

am
ir

 C
ud

ic
/iS

to
ck

ph
ot

o.

2.3  Calling Methods   43

At this tailor shop, the customer’s measurements
and the fabric are the arguments of the sew method.
The return value is the finished garment.

© Loentura/iStockphoto.

Some methods require multiple arguments; others don’t require any arguments at
all. An example of the latter is the length method of the String class (see Figure 7). All
the information that the length method requires to do its job—namely, the character
sequence of the string—is stored in the object that carries out the method.

2.3.3  Return Values

Some methods, such as the println method, carry out an action for you. Other methods
compute and return a value. For example, the length method returns a value, namely
the number of characters in the string. You can store the return value in a variable:

int numberOfCharacters = greeting.length();

You can also use the return value of one method as an argument of another method:
System.out.println(greeting.length());

The method call greeting.length() returns a value—the integer 13. The return value
becomes an argument of the println method. Figure 8 shows the process.

Figure 7 
Invoking the length
Method on a String Object

13length

toUpperCase

String

(no argument)

H e l l o ...

The return value of
a method is a result
that the method has
computed.

Figure 8  Passing the Result of a Method Call to Another Method

13length

toUpperCase

String

(no argument)

H e l l o ...

PrintStream

println

print

10101110

11110110

01101011

00110101

©
 L

eo
nt

ur
a/

iS
to

ck
ph

ot
o.

44  Chapter 2  Using Objects

Not all methods return values. One example is the println method. The println
method interacts with the operating system, causing characters to appear in a win-
dow. But it does not return a value to the code that calls it.

Let us analyze a more complex method call. Here, we will call the replace method
of the String class. The replace method carries out a search-and-replace operation,
similar to that of a word processor. For example, the call

river.replace("issipp", "our")

constructs a new string that is obtained by replacing all occurrences of "issipp" in
"Mississippi" with "our". (In this situation, there was only one replacement.) The
method returns the String object "Missouri". You can save that string in a variable:

river = river.replace("issipp", "our");

Or you can pass it to another method:
System.out.println(river.replace("issipp", "our"));

As Figure 9 shows, this method call

•	 Is invoked on a String object: "Mississippi"
•	 Has two arguments: the strings "issipp" and "our"
•	 Returns a value: the string "Missouri"

Table 3 Method Arguments and Return Values

Example Comments

System.out.println(greeting) greeting is an argument of the println method.

greeting.replace("e","3") The replace method has two arguments, in this
case "e" and "3".

greeting.length() The length method has no arguments.

int n = greeting.length(); The length method returns an integer value.

System.out.println(n); The println method returns no value. In the
API documentation, its return type is void.

System.out.println(greeting.length()); The return value of one method can become the
argument of another.

Figure 9  Calling the replace Method

length

toUpperCase

replace

String

M i s s i ...

"issipp"

"our"

"Missouri"

2.3  Calling Methods   45

2.3.4  Method Declarations

When a method is declared in a class, the declaration specifies the types of the argu-
ments and the return value. For example, the String class declares the length method as

public int length()

That is, there are no arguments, and the return value has the type int. (For now, all
the methods that we consider will be “public” methods—see Chapter 9 for more
restricted methods.)

The replace method is declared as
public String replace(String target, String replacement)

To call the replace method, you supply two arguments, target and replacement, which
both have type String. The returned value is another string.

When a method returns no value, the return type is declared with the reserved
word void. For example, the PrintStream class declares the println method as

public void println(String output)

Occasionally, a class declares two methods with the same name and different argu-
ment types. For example, the PrintStream class declares a second method, also called
println, as

public void println(int output)

That method is used to print an integer value. We say that the println name is over-
loaded because it refers to more than one method.

14.	 How can you compute the length of the string "Mississippi"?
15.	 How can you print out the uppercase version of "Hello, World!"?
16.	 Is it legal to call river.println()? Why or why not?
17.	 What are the arguments in the method call river.replace("p", "s")?
18.	 What is the result of the call river.replace("p", "s")?
19.	 What is the result of the call greeting.replace("World", "Dave").length()?
20.	 How is the toUpperCase method declared in the String class?

Practice It	 Now you can try these exercises at the end of the chapter: R2.8, R2.9, R2.10.

Learn By Trying

When you learn about a new method, write a small program to try it out. For example, you can
go right now to your Java development environment and run this program:

public class ReplaceDemo
{
 public static void main(String[] args)
 {
 String river = "Mississippi";
 System.out.println(river.replace("issipp", "our"));
 }
}

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a program
that demonstrates
method calls.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Programming Tip 2.2

© Eric Isselé/iStockphoto.

46  Chapter 2  Using Objects

Then you can see with your own eyes what the replace method does. Also, you can run experi-
ments. Does replace change every match, or only the first one? Try it out:

System.out.println(river.replace("i", "x"));

Set up your work environment to make this kind of experimentation easy and natural. Keep a
file with the blank outline of a Java program around, so you can copy and paste it when needed.
Alternatively, some development environments will automatically type the class and main
method. Find out if yours does. Some environments even let you type commands into a win-
dow and show you the result right away, without having to make a main method to call System.
out.println (see Figure 10).

2.4  Constructing Objects
Generally, when you want to use objects in your pro-
gram, you need to specify their initial properties by
constructing them.

To learn about object construction, we need to go
beyond String objects and the System.out object. Let us
turn to another class in the Java library: the Rectangle
class. Objects of type Rectangle describe rectangular
shapes. These objects are useful for a variety of pur-
poses. You can assemble rectangles into bar charts, and
you can program simple games by moving rectangles
inside a window.

Note that a Rectangle object isn’t a rectangular
shape—it’s an object that contains a set of numbers. The
numbers describe the rectangle (see Figure 11). Each
rectangle is described by the x- and y-coordinates of its
top-left corner, its width, and its height.

Figure 10  The Code Pad in BlueJ

© sinankocasian/iStockphoto.

Objects of the Rectangle class
describe rectangular shapes.

©
 si

na
nk

oc
as

ia
n/

iS
to

ck
ph

ot
o.

www.ebook3000.com

http://www.ebook3000.org

2.4  Constructing Objects   47

Figure 11  Rectangle Objects

x =

Rectangle

y =

width =

height =

5

10

20

3030

x =

Rectangle

y =

width =

height =

45

0

30

3020

x =

Rectangle

y =

width =

height =

35

30

20

3020

It is very important that you understand this distinction. In the computer, a Rect-
angle object is a block of memory that holds four numbers, for example x = 5, y = 10,
width = 20, height = 30. In the imagination of the programmer who uses a Rectangle
object, the object describes a geometric figure.

To make a new rectangle, you need to specify the x, y, width, and height values.
Then invoke the new operator, specifying the name of the class and the argument(s)
required for constructing a new object. For example, you can make a new rectangle
with its top-left corner at (5, 10), width 20, and height 30 as follows:

new Rectangle(5, 10, 20, 30)

Here is what happens in detail:

1.	The new operator makes a Rectangle object.
2.	It uses the arguments (in this case, 5, 10, 20, and 30) to initialize the

object’s data.
3.	It returns the object.

The process of creating a new object is called construction. The four values 5, 10, 20,
and 30 are called the construction arguments.

The new expression yields an object, and you need to store the object if you want
to use it later. Usually you assign the output of the new operator to a variable. For
example,

Rectangle box = new Rectangle(5, 10, 20, 30);

Use the new
operator, followed
by a class name
and arguments,
to construct
new objects.

Syntax 2.3	 Object Construction

new ClassName(arguments)Syntax

Rectangle box = new Rectangle(5, 10, 20, 30);

System.out.println(new Rectangle());

Construction arguments

Usually, you save
the constructed object

in a variable.

The new expression yields an object.

Supply the parentheses even when
there are no arguments.You can also

pass a constructed object
to a method.

48  Chapter 2  Using Objects

Some classes let you construct objects in multiple ways. For example, you can also
obtain a Rectangle object by supplying no construction arguments at all (but you must
still supply the parentheses):

new Rectangle()

This expression constructs a (rather useless) rectangle with its top-left corner at the
origin (0, 0), width 0, and height 0.

21.	 How do you construct a square with center (100, 100) and side length 20?
22.	 Initialize the variables box and box2 with two rectangles that touch each other.
23.	 The getWidth method returns the width of a Rectangle object. What does the fol-

lowing statement print?
System.out.println(new Rectangle().getWidth());

24.	 The PrintStream class has a constructor whose argument is the name of a file.
How do you construct a PrintStream object with the construction argument
"output.txt"?

25.	 Write a statement to save the object that you constructed in Self Check 24 in a
variable.

Practice It	 Now you can try these exercises at the end of the chapter: R2.13, R2.16, R2.18.

Trying to Invoke a Constructor Like a Method

Constructors are not methods. You can only use a constructor with the new operator, not to
reinitialize an existing object:

box.Rectangle(20, 35, 20, 30); // Error—can’t reinitialize object

The remedy is simple: Make a new object and overwrite the current one stored by box.

box = new Rectangle(20, 35, 20, 30); // OK

2.5  Accessor and Mutator Methods
In this section we introduce a useful terminology for the methods of a class. A method
that accesses an object and returns some information about it, without changing the
object, is called an accessor method. In contrast, a method whose purpose is to mod-
ify the internal data of an object is called a mutator method.

For example, the length method of the String class is an accessor method. It returns
information about a string, namely its length. But it doesn’t modify the string at all
when counting the characters.

The Rectangle class has a number of accessor methods. The getX, getY, getWidth, and
getHeight methods return the x- and y-coordinates of the top-left corner, the width,
and the height values. For example,

double width = box.getWidth();

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a program
that demonstrates
constructors.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Common Error 2.3

© John Bell/iStockphoto.

An accessor method
does not change the
internal data of the
object on which it is
invoked. A mutator
method changes
the data.

2.5  Accessor and Mutator Methods   49

Now let us consider a mutator method. Programs that manipulate rectangles fre-
quently need to move them around, for example, to display animations. The Rectangle
class has a method for that purpose, called translate. (Mathematicians use the term
“translation” for a rigid motion of the plane.) This method moves a rectangle by a
certain distance in the x- and y-directions. The method call,

box.translate(15, 25); 

moves the rectangle by 15 units in the x-direction and 25 units in the y-direction (see
Figure 12). Moving a rectangle doesn’t change its width or height, but it changes the
top-left corner. Afterward, the rectangle that had its top-left corner at (5, 10) now has
it at (20, 35).

This method is a mutator because it modifies the object on which the method is
invoked.

26.	 What does this sequence of statements print?
Rectangle box = new Rectangle(5, 10, 20, 30);
System.out.println("Before: " + box.getX());
box.translate(25, 40);
System.out.println("After: " + box.getX());

27.	 What does this sequence of statements print?
Rectangle box = new Rectangle(5, 10, 20, 30);
System.out.println("Before: " + box.getWidth());
box.translate(25, 40);
System.out.println("After: " + box.getWidth());

28.	 What does this sequence of statements print?
String greeting = "Hello";
System.out.println(greeting.toUpperCase());
System.out.println(greeting);

29.	 Is the toUpperCase method of the String class an accessor or a mutator?
30.	 Which call to translate is needed to move the rectangle declared by Rectangle

box = new Rectangle(5, 10, 20, 30) so that its top-left corner is the origin (0, 0)?

Practice It	 Now you can try these exercises at the end of the chapter: R2.19, E2.7, E2.9.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a program that
demonstrates acces-
sors and mutators.

© Alex Slobodkin/iStockphoto.

Figure 12  Using the translate Method to Move a Rectangle

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

50  Chapter 2  Using Objects

2.6  The API Documentation
The classes and methods of the Java library are listed in the API documentation.
The API is the “application programming interface”. A programmer who uses the
Java classes to put together a computer program (or application) is an application pro-
grammer. That’s you. In contrast, the programmers who designed and implemented
the library classes such as PrintStream and Rectangle are system programmers.

You can find the API documentation on the Web. Point your web browser to
http://docs.oracle.com/javase/8/docs/api/index.html. An abbreviated version of the API
documentation is provided in Appendix D that may be easier to use at first, but you
should eventually move on to the real thing.

2.6.1  Browsing the API Documentation

The API documentation documents all classes in the Java library—there are thou-
sands of them (see Figure 13, top). Most of the classes are rather specialized, and only
a few are of interest to the beginning programmer.

Locate the Rectangle link in the left pane, preferably by using the search function of
your browser. Click on the link, and the right pane shows all the features of the Rect-
angle class (see Figure 13, bottom).

The API (Application
Programming Inter
face) documentation
lists the classes
and methods of
the Java library.

Figure 13  The API Documentation of the Standard Java Library

API documentation of
the Rectangle class

Scroll down

2.6  The API Documentation   51

Figure 14  The Method Summary for the Rectangle Class

API documentation of
the translate method

1

2

The API documentation for each class starts out with a section that describes the
purpose of the class. Then come summary tables for the constructors and methods
(see Figure 14, top). Click on a method’s link to get a detailed description (see Figure
14, bottom).

The detailed description of a method shows

•	 The action that the method carries out. 1

•	 The types and names of the parameter variables that receive the arguments when
the method is called. 2

•	 The value that it returns (or the reserved word void if the method doesn’t return
any value).

As you can see, the Rectangle class has quite a few methods. While occasionally intim-
idating for the beginning programmer, this is a strength of the standard library. If you
ever need to do a computation involving rectangles, chances are that there is a method
that does all the work for you.

For example, suppose you want to change the width or height of a rectangle. If
you browse through the API documentation, you will find a setSize method with
the description “Sets the size of this Rectangle to the specified width and height.” The
method has two arguments, described as

•	 width - the new width for this Rectangle
•	 height - the new height for this Rectangle

52  Chapter 2  Using Objects

We can use this information to change the box object so that it is a square of side length
40. The name of the method is setSize, and we supply two arguments: the new width
and height:

box.setSize(40, 40);

2.6.2  Packages

The API documentation contains another important piece of information about each
class. The classes in the standard library are organized into packages. A package is a
collection of classes with a related purpose. The Rectangle class belongs to the pack-
age java.awt (where awt is an abbreviation for “Abstract Windowing Toolkit”), which
contains many classes for drawing windows and graphical shapes. You can see the
package name java.awt in Figure 13, just above the class name.

To use the Rectangle class from the java.awt package, you must import the package.
Simply place the following line at the top of your program:

import java.awt.Rectangle;

Why don’t you have to import the System and String classes? Because the System and
String classes are in the java.lang package, and all classes from this package are auto-
matically imported, so you never need to import them yourself.

31.	 Look at the API documentation of the String class. Which method would you
use to obtain the string "hello, world!" from the string "Hello, World!"?

32.	 In the API documentation of the String class, look at the description of the trim
method. What is the result of applying trim to the string " Hello, Space ! "? (Note
the spaces in the string.)

33.	 Look into the API documentation of the Rectangle class. What is the difference
between the methods void translate(int x, int y) and void setLocation(int x,
int y)?

34.	 The Random class is declared in the java.util package. What do you need to do in
order to use that class in your program?

Java classes are
grouped into
packages. Use the
import statement
to use classes that
are declared in
other packages.

Syntax 2.4	 Importing a Class from a Package

import packageName.ClassName;Syntax

import java.awt.Rectangle;

Class name

You can look up the package name
in the API documentation.

Package name

Import statements
must be at the top of

the source �le.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Testing Track 2.7  Implementing a Test Program   53

35.	 In which package is the BigInteger class located? Look it up in the API
documentation.

Practice It	 Now you can try these exercises at the end of the chapter: R2.20, E2.5, E2.12.

Don’t Memorize—Use Online Help

The Java library has thousands of classes and methods. It is neither necessary nor useful trying
to memorize them. Instead, you should become familiar with using the API documentation.
Because you will need to use the API documentation all the time, it is best to download and
install it onto your computer, particularly if your computer is not always connected to the
Internet. You can download the documentation from http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

2.7  Implementing a Test Program
In this section, we discuss the steps that are necessary to implement a test program.
The purpose of a test program is to verify that one or more methods have been imple-
mented correctly. A test program calls methods and checks that they return the
expected results. Writing test programs is a very important skill.

In this section, we will develop a simple program that tests a method in the Rectangle
class using these steps:

1.	Provide a tester class.
2.	Supply a main method.
3.	Inside the main method, construct one or more objects.
4.	Apply methods to the objects.
5.	Display the results of the method calls.
6.	Display the values that you expect to get.

Our sample test program tests the behavior of the translate method. Here are the key
steps (which have been placed inside the main method of the MoveTester class).

Rectangle box = new Rectangle(5, 10, 20, 30);

// Move the rectangle
box.translate(15, 25);

// Print information about the moved rectangle
System.out.print("x: ");
System.out.println(box.getX());
System.out.println("Expected: 20");

We print the value that is returned by the getX method, and then we print a message
that describes the value we expect to see.

This is a very important step. You want to spend some time thinking about the
expected result before you run a test program. This thought process will help you
understand how your program should behave, and it can help you track down errors
at an early stage. Finding and fixing errors early is a very effective strategy that can
save you a great deal of time.

Programming Tip 2.3

© Eric Isselé/iStockphoto.

A test program
verifies that methods
behave as expected.

Determining the
expected result
in advance is an
important part
of testing.

54  Chapter 2  Using Objects	 Testing Track

In our case, the rectangle has been constructed with the top-left corner at (5, 10).
The x-direction is moved by 15, so we expect an x-value of 5 + 15 = 20 after the move.

Here is the program that tests the moving of a rectangle:

section_7/MoveTester.java

1 import java.awt.Rectangle;
2
3 public class MoveTester
4 {
5 public static void main(String[] args)
6 {
7 Rectangle box = new Rectangle(5, 10, 20, 30);
8
9 // Move the rectangle

10 box.translate(15, 25);
11
12 // Print information about the moved rectangle
13 System.out.print("x: ");
14 System.out.println(box.getX());
15 System.out.println("Expected: 20");
16
17 System.out.print("y: ");
18 System.out.println(box.getY());
19 System.out.println("Expected: 35");
20 }
21 }

Program Run

x: 20
Expected: 20
y: 35
Expected: 35

36.	 Suppose we had called box.translate(25, 15) instead of box.translate(15, 25).
What are the expected outputs?

37.	 Why doesn’t the MoveTester program need to print the width and height of the
rectangle?

Practice It	 Now you can try these exercises at the end of the chapter: E2.1, E2.8, E2.14.

Testing Classes in an Interactive Environment

Some development environments are specifically designed to help students explore objects
without having to provide tester classes. These environments can be very helpful for gaining
insight into the behavior of objects, and for promoting object-oriented thinking. The BlueJ
environment (shown in the figure) displays objects as blobs on a workbench.

You can construct new objects, put them on the workbench, invoke methods, and see the
return values, all without writing a line of code. You can download BlueJ at no charge from
www.bluej.org. Another excellent environment for interactively exploring objects is Dr. Java at
drjava.sourceforge.net.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Special Topic 2.1

© Eric Isselé/iStockphoto.

2.8  Object References   55

Testing a Method Call in BlueJ

2.8  Object References
In Java, an object variable (that is, a variable whose type is a class) does not actually
hold an object. It merely holds the memory location of an object. The object itself is
stored elsewhere—see Figure 15.

© Tom Horyn/iStockphoto.

Worked Example 2.1	 How Many Days Have You Been Alive?

Explore the API of a class Day that represents a calendar day. Using
that class, learn to write a program that computes how many days have
elapsed since the day you were born. Go to wiley.com/go/bjeo6examples
and download Worked Example 2.1.

© Constance Bannister Corp/Hulton Archive/Getty Images, Inc.

© Alex Slobodkin/iStockphoto.

© Tom Horyn/iStockphoto.

Worked Example 2.2	 Working with Pictures

Learn how to use the API of a Picture class to edit photos. Go to
wiley.com/go/bjeo6examples and download Worked Example 2.2.

Cay Horstmann.

© Alex Slobodkin/iStockphoto.

Figure 15  An Object Variable Containing an Object Reference

box =

x =

Rectangle

y =

width =

height =

5

10

20

3030

©
 C

on
st

an
ce

 B
an

ni
st

er

C
or

p/
H

ul
to

n
A

rc
hi

ve
/

G
et

ty
 Im

ag
es

, I
nc

.

C
ay

 H
or

st
m

an
n.

56  Chapter 2  Using Objects

There is a reason for this behavior. Objects can be very large. It is more efficient to
store only the memory location instead of the entire object.

We use the technical term object reference to denote the memory location of an
object. When a variable contains the memory location of an object, we say that it
refers to an object. For example, after the statement

Rectangle box = new Rectangle(5, 10, 20, 30);

the variable box refers to the Rectangle object that the new operator constructed. Tech-
nically speaking, the new operator returned a reference to the new object, and that
reference is stored in the box variable.

It is very important that you remember that the box variable does not contain the
object. It refers to the object. Two object variables can refer to the same object:

Rectangle box2 = box;

Now you can access the same Rectangle object as box and as box2, as shown in Figure 16.

In Java, numbers are not objects. Number variables actually store numbers. When
you declare

int luckyNumber = 13;

then the luckyNumber variable holds the number 13, not a reference to the number (see
Figure 17). The reason is again efficiency. Because numbers require little storage, it is
more efficient to store them directly in a variable.

You can see the difference between number variables and object variables when you
make a copy of a variable. When you copy a number, the original and the copy of the
number are independent values. But when you copy an object reference, both the
original and the copy are references to the same object.

Consider the following code, which copies a number and then changes the copy
(see Figure 18):

int luckyNumber = 13; 1

int luckyNumber2 = luckyNumber; 2

luckyNumber2 = 12; 3

Now the variable luckyNumber contains the value 13, and luckyNumber2 contains 12.

An object reference
describes the
location of an object.

© Jacob Wackerhausen/iStockphoto.
Multiple object
variables can contain
references to the
same object.

Figure 16  Two Object Variables Referring to the Same Object

box =

box2 =
x =

Rectangle

y =

width =

height =

5

10

20

3030

Figure 17  A Number Variable Stores a Number

luckyNumber = 13

Number variables
store numbers.
Object variables
store references.

©
 Ja

co
b

W
ac

ke
rh

au
se

n/
iS

to
ck

ph
ot

o.

2.8  Object References   57

Figure 18 
Copying Numbers

luckyNumber = 13

luckyNumber2 = 13

luckyNumber = 131

2

luckyNumber = 13

luckyNumber2 = 12

3

Now consider the seemingly analogous code with Rectangle objects (see Figure 19).

Rectangle box = new Rectangle(5, 10, 20, 30); 1

Rectangle box2 = box; 2

box2.translate(15, 25); 3

Because box and box2 refer to the same rectangle after step  2 , both variables refer to
the moved rectangle after the call to the translate method.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a program
that demonstrates
the difference
between copying
numbers and object
references.

© Alex Slobodkin/iStockphoto.

Figure 19  Copying Object References

box =

box2 =
x =

Rectangle

y =

width =

height =

5

10

20

3030

box =

box2 =
x =

Rectangle

y =

width =

height =

20

35

20

3030

box =

x =

Rectangle

y =

width =

height =

5

10

20

3030

1

2

3

58  Chapter 2  Using Objects

You need not worry too much about the difference between objects and object
references. Much of the time, you will have the correct intuition when you think of
the “object box” rather than the technically more accurate “object reference stored
in variable box”. The difference between objects and object references only becomes
apparent when you have multiple variables that refer to the same object.

38.	 What is the effect of the assignment String greeting2 = greeting?
39.	 After calling greeting2.toUpperCase(), what are the contents of greeting and

greeting2?

Practice It	 Now you can try these exercises at the end of the chapter: R2.17, R2.21.

Computing & Society 2.1  Computer Monopoly

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

When International
Business Machines

Corporation (IBM), a successful manu-
facturer of punched-card equipment
for tabulating data, first turned its
attention to designing computers in
the early 1950s, its planners assumed
that there was a market for perhaps 50
such devices, for installation by the
government, the military, and a few of
the country’s largest corporations.
Instead, they sold about 1,500
machines of their System 650 model
and went on to build and sell more
powerful computers.

These computers, called main-
frames, were huge. They filled rooms,
which had to be climate-controlled to
protect the delicate equipment. IBM
was not the first company to build
mainframe computers; that honor
belongs to the Univac Corporation.
However, IBM soon became the major
player, partially because of its techni-
cal excellence and attention to cus-
tomer needs and partially because it
exploited its strengths and structured
its products and services in a way that
made it difficult for customers to mix
them with those of other vendors.

As all of IBM’s competitors fell
on hard times, the U.S. government
brought an antitrust suit against IBM
in 1969. In the United States, it is legal
to be a monopoly supplier, but it is
not legal to use one’s monopoly in one
market to gain supremacy in another.
IBM was accused of forcing customers

to buy bundles of computers, software,
and peripherals, making it impossible
for other vendors of software and
peripherals to compete.

The suit went to trial in 1975 and
dragged on until 1982, when it was
abandoned, largely because new
waves of smaller computers had made
it irrelevant.

In fact, when IBM offered its first
personal computers, its operating sys-
tem was supplied by an outside vendor,
Microsoft, which became so dominant
that it too was sued by the U.S. gover-
ment for abusing its monopoly position
in 1998. Microsoft
was accused of bun-
dling its web browser
with its operating
system. At the time,
Microsoft allegedly
threatened hardware
makers that they
would not receive a
Windows license if
they distributed the
competing Netscape
browser. In 2000, the
company was found
guilty of antitrust vio-
lations, and the judge
ordered it broken
up into an operating
systems unit and an
applications unit. The
breakup was reversed
on appeal, and a set-
tlement in 2001 was

largely unsuccessful in establishing
alternatives for desktop software.

Now the computing landscape is
shifting once again, toward mobile
devices and cloud computing. As you
observe that change, you may well see
new monopolies in the making. When a
software vendor needs the permission
of a hardware vendor in order to place
a product into an “app store”, or when
a maker of a digital book reader tries
to coerce publishers into a particular
pricing structure, the question arises
whether such conduct is illegal exploi-
tation of a monopoly position.

© Media Bakery.

Corbis Digital Stock.

A Mainframe Computer

C
or

bi
s D

ig
it

al
 S

to
ck

.

Graphics Track 2.9  Graphical Applications   59

2.9  Graphical Applications
The following optional sections teach you how to write graphical applications:
applications that display drawings inside a window. The drawings are made up of
shape objects: rectangles, ellipses, and lines. The shape objects provide another source
of examples, and many students enjoy the visual feedback.

2.9.1  Frame Windows

A graphical application shows information inside a frame:
a window with a title bar, as shown in Figure 20. In this sec-
tion, you will learn how to display a frame. In Section 2.9.2,
you will learn how to create a drawing inside the frame.

A graphical application shows
information inside a frame.

To show a frame, carry out the following steps:

1.	Construct an object of the JFrame class:
JFrame frame = new JFrame();

2.	Set the size of the frame:
frame.setSize(300, 400);

This frame will be 300 pixels wide and 400 pixels tall. If you omit this step the
frame will be 0 by 0 pixels, and you won’t be able to see it. (Pixels are the tiny
dots from which digital images are composed.)

3.	If you’d like, set the title of the frame:
frame.setTitle("An empty frame");

If you omit this step, the title bar is simply left blank.
4.	Set the “default close operation”:

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

When the user closes the frame, the program automatically exits. Don’t omit
this step. If you do, the program keeps running even after the frame is closed.

5.	Make the frame visible:
frame.setVisible(true);

The simple program below shows all of these steps. It produces the empty frame
shown in Figure 20.

The JFrame class is a part of the javax.swing package. Swing is the nickname for the
graphical user interface library in Java. The “x” in javax denotes the fact that Swing
started out as a Java extension before it was added to the standard library.

© Eduardo Jose Bernardino/iStockphoto.

To show a frame,
construct a JFrame
object, set its size,
and make it visible.

©
 E

du
ar

do
 J

os
e

B
er

na
rd

in
o/

iS
to

ck
ph

ot
o.

60  Chapter 2  Using Objects	 Graphics Track

Figure 20  A Frame Window

Title bar Close button

We will go into much greater detail about Swing programming in Chapters 3,
10, and 20. For now, consider this program to be the essential plumbing that is
required to show a frame.

section_9_1/EmptyFrameViewer.java

1 import javax.swing.JFrame;
2
3 public class EmptyFrameViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new JFrame();
8 frame.setSize(300, 400);
9 frame.setTitle("An empty frame");

10 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 frame.setVisible(true);
12 }
13 }

2.9.2  Drawing on a Component

In this section, you will learn how to make shapes appear inside a frame window. The
first drawing will be exceedingly modest: just two rectangles (see Figure 21). You’ll
soon see how to produce more interesting drawings. The purpose of this example is
to show you the basic outline of a program that creates a drawing.

You cannot draw directly onto a frame. Instead, drawing happens in a component
object. In the Swing toolkit, the JComponent class represents a blank component.

Because we don’t want to add a blank component, we have to modify the JComponent
class and specify how the component should be painted. The solution is to declare a
new class that extends the JComponent class. You will learn about the process of extend-
ing classes in Chapter 9.

In order to display a
drawing in a frame,
declare a class
that extends the
JComponent class.

Graphics Track 2.9  Graphical Applications   61

Figure 21 
Drawing Rectangles

For now, simply use the following code as a template:
public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Drawing instructions.
 }
}

The extends reserved word indicates that our component class, RectangleComponent,
can be used like a JComponent. However, the RectangleComponent class will be different
from the plain JComponent class in one respect: Its paintComponent method will contain
instructions to draw the rectangles.

When the component is shown for the first time, the paintComponent method is
called automatically. The method is also called when the window is resized, or when
it is shown again after it was hidden.

The paintComponent method receives an object of type Graphics as its argument. The
Graphics object stores the graphics state—the current color, font, and so on—that are
used for drawing operations. However, the Graphics class is not very useful. When
programmers clamored for a more object-oriented approach to drawing graphics, the
designers of Java created the Graphics2D class, which extends the Graphics class. When-
ever the Swing toolkit calls the paintComponent method, it actually passes an object of
type Graphics2D as the argument. Because we want to use the more sophisticated meth-
ods to draw two-dimensional graphics objects, we need to use the Graphics2D class.
This is accomplished by using a cast:

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 // Recover Graphics2D
 Graphics2D g2 = (Graphics2D) g;
 . . .
 }
}

Place drawing
instructions inside
the paintComponent
method. That
method is called
whenever the
component needs
to be repainted.

Use a cast to recover
the Graphics2D object
from the Graphics
argument of the
paintComponent
method.

62  Chapter 2  Using Objects	 Graphics Track

Chapter 9 has more information about casting. For now, you should simply
include the cast at the top of your paintComponent methods.

Now you are ready to draw shapes. The draw method of the Graphics2D class can
draw shapes, such as rectangles, ellipses, line segments, polygons, and arcs. Here we
draw a rectangle:

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 . . .
 Rectangle box = new Rectangle(5, 10, 20, 30);
 g2.draw(box);
 . . .
 }
}

When positioning the shapes, you need to pay attention to the coordinate system.
It is different from the one used in mathematics. The origin (0, 0) is at the upper-left
corner of the component, and the y-coordinate grows downward.

(0, 0)

(5, 10)

(25, 40)

 x

y

Following is the source code for the RectangleComponent class. Note that the paint
Component method of the RectangleComponent class draws two rectangles. As you can see
from the import statements, the Graphics and Graphics2D classes are part of the java.awt
package.

section_9_2/RectangleComponent.java

1 import java.awt.Graphics;
2 import java.awt.Graphics2D;
3 import java.awt.Rectangle;
4 import javax.swing.JComponent;
5
6 /**
7 A component that draws two rectangles.
8 */
9 public class RectangleComponent extends JComponent

10 {
11 public void paintComponent(Graphics g)
12 {
13 // Recover Graphics2D
14 Graphics2D g2 = (Graphics2D) g;
15

Graphics Track 2.9  Graphical Applications   63

16 // Construct a rectangle and draw it
17 Rectangle box = new Rectangle(5, 10, 20, 30);
18 g2.draw(box);
19
20 // Move rectangle 15 units to the right and 25 units down
21 box.translate(15, 25);
22
23 // Draw moved rectangle
24 g2.draw(box);
25 }
26 }

2.9.3  Displaying a Component in a Frame

In a graphical application, you need a frame to show the application, and you need
a component for the drawing. In this section, you will see how to combine the two.
Follow these steps:

1.	Construct a frame object and configure it.
2.	Construct an object of your component class:

RectangleComponent component = new RectangleComponent();

3.	Add the component to the frame:

frame.add(component);

4.	Make the frame visible.

The following listing shows the complete process.

section_9_3/RectangleViewer.java

1 import javax.swing.JFrame;
2
3 public class RectangleViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new JFrame();
8
9 frame.setSize(300, 400);

10 frame.setTitle("Two rectangles");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12
13 RectangleComponent component = new RectangleComponent();
14 frame.add(component);
15
16 frame.setVisible(true);
17 }
18 }

Note that the rectangle drawing program consists of two classes:

•	 The RectangleComponent class, whose paintComponent method produces the drawing.
•	 The RectangleViewer class, whose main method constructs a frame and a Rectangle

Component, adds the component to the frame, and makes the frame visible.

64  Chapter 2  Using Objects	 Graphics Track

40.	 How do you display a square frame with a title bar that reads “Hello, World!”?
41.	 How can a program display two frames at once?
42.	 How do you modify the program to draw two squares?
43.	 How do you modify the program to draw one rectangle and one square?
44.	 What happens if you call g.draw(box) instead of g2.draw(box)?

Practice It	 Now you can try these exercises at the end of the chapter: R2.22, R2.26, E2.18.

2.10  Ellipses, Lines, Text, and Color
In Section 2.9 you learned how to write a program that draws
rectangles. In the following sections, you will learn how to
draw other shapes: ellipses and lines. With these graphical ele-
ments, you can draw quite a few interesting pictures.

2.10.1  Ellipses and Circles

To draw an ellipse, you specify its bounding box (see Fig-
ure 22) in the same way that you would specify a rectangle,
namely by the x- and y-coordinates of the top-left corner and
the width and height of the box.

However, there is no simple Ellipse class that you can use.
Instead, you must use one of the two classes Ellipse2D.Float
and Ellipse2D.Double, depending on whether you want to store the ellipse coordinates
as single- or double-precision floating-point values. Because the latter are more con-
venient to use in Java, we will always use the Ellipse2D.Double class.

Here is how you construct an ellipse:
Ellipse2D.Double ellipse = new Ellipse2D.Double(x, y, width, height);

The class name Ellipse2D.Double looks different from the class names that you have
encountered up to now. It consists of two class names Ellipse2D and Double separated

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© Alexey Avdeev/iStockphoto.You can make simple
drawings out of lines,
rectangles, and circles.

The Ellipse2D.Double
and Line2D.Double
classes describe
graphical shapes.

Figure 22  An Ellipse and Its Bounding Box

(x, y)

H
ei

gh
t

Width

©
 A

le
xe

y
A

vd
ee

v/
iS

to
ck

ph
ot

o.

Graphics Track 2.10  Ellipses, Lines, Text, and Color   65

by a period (.). This indicates that Ellipse2D.Double is a so-called inner class inside
Ellipse2D. When constructing and using ellipses, you don’t actually need to worry
about the fact that Ellipse2D.Double is an inner class—just think of it as a class with a
long name. However, in the import statement at the top of your program, you must be
careful that you import only the outer class:

import java.awt.geom.Ellipse2D;

Drawing an ellipse is easy: Use exactly the same draw method of the Graphics2D class
that you used for drawing rectangles.

g2.draw(ellipse);

To draw a circle, simply set the width and height to the same values:
Ellipse2D.Double circle = new Ellipse2D.Double(x, y, diameter, diameter);
g2.draw(circle);

Notice that (x, y) is the top-left corner of the bounding box, not the center of the
circle.

2.10.2  Lines

To draw a line, use an object of the Line2D.Double class. A line is constructed by speci-
fying its two end points. You can do this in two ways. Give the x- and y-coordinates
of both end points:

Line2D.Double segment = new Line2D.Double(x1, y1, x2, y2);

Or specify each end point as an object of the Point2D.Double class:
Point2D.Double from = new Point2D.Double(x1, y1);
Point2D.Double to = new Point2D.Double(x2, y2);

Line2D.Double segment = new Line2D.Double(from, to);

The second option is more object-oriented and is often more useful, particularly if
the point objects can be reused elsewhere in the same drawing.

2.10.3  Drawing Text

You often want to put text inside a drawing, for example, to label some of the parts.
Use the drawString method of the Graphics2D class to draw a string anywhere in a win-
dow. You must specify the string and the x- and y-coordinates of the basepoint of the
first character in the string (see Figure 23). For example,

g2.drawString("Message", 50, 100);

The drawString
method draws a
string, starting at
its basepoint.

Figure 23  Basepoint and Baseline

Baseline

Basepoint

66  Chapter 2  Using Objects	 Graphics Track

2.10.4  Colors

When you first start drawing, all shapes and strings are drawn with a black pen. To
change the color, you need to supply an object of type Color. Java uses the RGB color
model. That is, you specify a color by the amounts of the primary colors—red, green,
and blue—that make up the color. The amounts are given as integers between 0 (pri-
mary color not present) and 255 (maximum amount present). For example,

Color magenta = new Color(255, 0, 255);

constructs a Color object with maximum red, no green, and maximum blue, yielding a
bright purple color called magenta.

For your convenience, a variety of colors have been declared in the Color class.
Table 4 shows those colors and their RGB values. For example, Color.PINK has been
declared to be the same color as new Color(255, 175, 175).

To draw a shape in a different color, first set the color of the Graphics2D object, then
call the draw method:

g2.setColor(Color.RED);
g2.draw(circle); // Draws the shape in red

If you want to color the inside of the shape, use the fill method instead of the draw
method. For example,

g2.fill(circle);

fills the inside of the circle with the current color.

Table 4 Predefined Colors

Color RGB Values

Color.BLACK 0, 0, 0

Color.BLUE 0, 0, 255

Color.CYAN 0, 255, 255

Color.GRAY 128, 128, 128

Color.DARK_GRAY 64, 64, 64

Color.LIGHT_GRAY 192, 192, 192

Color.GREEN 0, 255, 0

Color.MAGENTA 255, 0, 255

Color.ORANGE 255, 200, 0

Color.PINK 255, 175, 175

Color.RED 255, 0, 0

Color.WHITE 255, 255, 255

Color.YELLOW 255, 255, 0

When you set a new
color in the graphics
context, it is used for
subsequent drawing
operations.

Graphics Track 2.10  Ellipses, Lines, Text, and Color   67

The following program puts all these shapes to work, creating a simple drawing
(see Figure 24).

section_10/FaceComponent.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import java.awt.Graphics2D;
4 import java.awt.Rectangle;
5 import java.awt.geom.Ellipse2D;
6 import java.awt.geom.Line2D;
7 import javax.swing.JComponent;
8
9 /**

10 A component that draws an alien face.
11 */
12 public class FaceComponent extends JComponent
13 {
14 public void paintComponent(Graphics g)
15 {
16 // Recover Graphics2D
17 Graphics2D g2 = (Graphics2D) g;
18
19 // Draw the head
20 Ellipse2D.Double head = new Ellipse2D.Double(5, 10, 100, 150);
21 g2.draw(head);
22
23 // Draw the eyes
24 g2.setColor(Color.GREEN);
25 Rectangle eye = new Rectangle(25, 70, 15, 15);
26 g2.fill(eye);
27 eye.translate(50, 0);
28 g2.fill(eye);
29
30 // Draw the mouth
31 Line2D.Double mouth = new Line2D.Double(30, 110, 80, 110);
32 g2.setColor(Color.RED);
33 g2.draw(mouth);
34
35 // Draw the greeting
36 g2.setColor(Color.BLUE);
37 g2.drawString("Hello, World!", 5, 175);
38 }
39 }

Figure 24  An Alien Face

68  Chapter 2  Using Objects	 Graphics Track

section_10/FaceViewer.java

1 import javax.swing.JFrame;
2
3 public class FaceViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new JFrame();
8 frame.setSize(150, 250);
9 frame.setTitle("An Alien Face");

10 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11
12 FaceComponent component = new FaceComponent();
13 frame.add(component);
14
15 frame.setVisible(true);
16 }
17 }

45.	 Give instructions to draw a circle with center (100, 100) and radius 25.
46.	 Give instructions to draw a letter “V” by drawing two line segments.
47.	 Give instructions to draw a string consisting of the letter “V”.
48.	 What are the RGB color values of Color.BLUE?
49.	 How do you draw a yellow square on a red background?

Practice It	 Now you can try these exercises at the end of the chapter: R2.27, E2.19, E2.20.

Identify objects, methods, and classes.

•	 Objects are entities in your program that you manipulate by
calling methods.

•	 A method is a sequence of instructions that accesses the data
of an object.

•	 A class describes a set of objects with the same behavior.

Write variable declarations and assignments.

•	 A variable is a storage location with a name.
•	 When declaring a variable, you usually specify an initial value.
•	 When declaring a variable, you also specify the type of its values.
•	 Use the int type for numbers that cannot have a fractional part.
•	 Use the double type for floating-point numbers.
•	 Numbers can be combined by arithmetic operators such as +, -, and *.
•	 By convention, variable names should start with a lowercase letter.
•	 Use comments to add explanations for humans who read your

code. The compiler ignores comments.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

C H A P T E R S U M M A R Y

© Luc Meaille/iStockphoto.

© Ingenui/iStockphoto. © GlobalP/iStockphoto.

Chapter Summary  69

•	 Use the assignment operator (=) to change the value of a variable.
•	 All variables must be initialized before you access them.
•	 The assignment operator = does not denote mathematical equality.

Recognize arguments and return values of methods.

•	 The public interface of a class specifies what you can do
with its objects. The hidden implementation describes
how these actions are carried out.

•	 An argument is a value that is supplied in a method call.
•	 The return value of a method is a result that the method

has computed.

Use constructors to construct new objects.

•	 Use the new operator, followed by a class name and arguments, to construct
new objects.

Classify methods as accessor and mutator methods.

•	 An accessor method does not change the internal data of the object on which it is
invoked. A mutator method changes the data.

Use the API documentation for finding method descriptions and packages.

•	 The API (Application Programming Interface) documentation lists the classes
and methods of the Java library.

•	 Java classes are grouped into packages. Use the import statement to use classes that
are declared in other packages.

Write programs that test the behavior of methods.

•	 A test program verifies that methods behave as expected.
•	 Determining the expected result in advance is an important part of testing.

Describe how multiple object references can refer to the same object.

•	 An object reference describes the location of an object.
•	 Multiple object variables can contain references to the same object.
•	 Number variables store numbers. Object variables store references.

Write programs that display frame windows.

•	 To show a frame, construct a JFrame object, set its size, and make it visible.
•	 In order to display a drawing in a frame, declare a class that extends the

JComponent class.

© Loentura/iStockphoto.

© sinankocasian/iStockphoto.

© Jacob Wackerhausen/iStockphoto.

70  Chapter 2  Using Objects

•	 Place drawing instructions inside the paintComponent method. That method is called
whenever the component needs to be repainted.

•	 Use a cast to recover the Graphics2D object from the Graphics argument of the
paintComponent method.

Use the Java API for drawing simple figures.

•	 The Ellipse2D.Double and Line2D.Double classes describe graphical shapes.
•	 The drawString method draws a string, starting at its basepoint.
•	 When you set a new color in the graphics context, it is used for subsequent

drawing operations.

• R2.1	 Explain the difference between an object and a class.

• R2.2	 Give three examples of objects that belong to the String class. Give an example of an
object that belongs to the PrintStream class. Name two methods that belong to the
String class but not the PrintStream class. Name a method of the PrintStream class that
does not belong to the String class.

• R2.3	 What is the public interface of a class? How does it differ from the implementation of
a class?

• R2.4	 Declare and initialize variables for holding the price and the description of an article
that is available for sale.

• R2.5	 What is the value of mystery after this sequence of statements?
int mystery = 1;
mystery = 1 - 2 * mystery;
mystery = mystery + 1;

• R2.6	 What is wrong with the following sequence of statements?
int mystery = 1;
mystery = mystery + 1;
int mystery = 1 - 2 * mystery;

© Eduardo Jose Bernardino/iStockphoto.

© Alexey Avdeev/iStockphoto.

java.awt.Color
java.awt.Component
 getHeight
 getWidth
 setSize
 setVisible
java.awt.Frame
 setTitle
java.awt.geom.Ellipse2D.Double
java.awt.geom.Line2D.Double
java.awt.geom.Point2D.Double

java.awt.Graphics
 setColor
java.awt.Graphics2D
 draw
 drawString
 fill
java.awt.Rectangle
 getX
 getY
 getHeight
 getWidth

 setSize
 translate
java.lang.String
 length
 replace
 toLowerCase
 toUpperCase
javax.swing.JComponent
 paintComponent
javax.swing.JFrame
 setDefaultCloseOperation

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

R E V I E W E X E R C I S E S

Review Exercises  71

•• R2.7	 Explain the difference between the = symbol in Java and in mathematics.

•• R2.8	 Give an example of a method that has an argument of type int. Give an example of a
method that has a return value of type int. Repeat for the type String.

•• R2.9	 Write Java statements that initialize a string message with "Hello" and then change it to
"HELLO". Use the toUpperCase method.

•• R2.10	 Write Java statements that initialize a string message with "Hello" and then change it to
"hello". Use the replace method.

•• R2.11	 Write Java statements that initialize a string message with a message such as "Hello,
World" and then remove punctuation characters from the message, using repeated
calls to the replace method.

• R2.12	 Explain the difference between an object and an object variable.

•• R2.13	 Give the Java code for constructing an object of class Rectangle, and for declaring an
object variable of class Rectangle.

•• R2.14	 Give Java code for objects with the following descriptions:
a.	A rectangle with center (100, 100) and all side lengths equal to 50
b.	A string with the contents “Hello, Dave”

Create objects, not object variables.

•• R2.15	 Repeat Exercise R2.14, but now declare object variables that are initialized with the
required objects.

•• R2.16	 Write a Java statement to initialize a variable square with a rectangle object whose
top-left corner is (10, 20) and whose sides all have length 40. Then write a statement
that replaces square with a rectangle of the same size and top-left corner (20, 20).

•• R2.17	 Write Java statements that initialize two variables square1 and square2 to refer to the
same square with center (20, 20) and side length 40.

•• R2.18	 Find the errors in the following statements:
a.	Rectangle r = (5, 10, 15, 20);
b.	double width = Rectangle(5, 10, 15, 20).getWidth();
c.	Rectangle r;

r.translate(15, 25);

d.	r = new Rectangle();
r.translate("far, far away!");

• R2.19	 Name two accessor methods and two mutator methods of the Rectangle class.

•• R2.20	 Consult the API documentation to find methods for
•	 Concatenating two strings, that is, making a string consisting of the first string,

followed by the second string.
•	 Removing leading and trailing white space of a string.
•	 Converting a rectangle to a string.
•	 Computing the smallest rectangle that contains two given rectangles.
•	 Returning a random floating-point number.

For each method, list the class in which it is defined, the return type, the method
name, and the types of the arguments.

72  Chapter 2  Using Objects

• R2.21	 Explain the difference between an object and an object reference.

• Graphics R2.22	 What is the difference between a console application and a graphical application?

•• Graphics R2.23	 Who calls the paintComponent method of a component? When does the call to the
paintComponent method occur?

•• Graphics R2.24	 Why does the argument of the paintComponent method have type Graphics and not
Graphics2D?

•• Graphics R2.25	 What is the purpose of a graphics context?

•• Graphics R2.26	 Why are separate viewer and component classes used for graphical programs?

• Graphics R2.27	 How do you specify a text color?

• Testing E2.1	 Write an AreaTester program that constructs a Rectangle object and then computes
and prints its area. Use the getWidth and getHeight methods. Also print the expected
answer.

• Testing E2.2	 Write a PerimeterTester program that constructs a Rectangle object and then com
putes and prints its perimeter. Use the getWidth and getHeight methods. Also print the
expected answer.

•• E2.3	 Write a program that initializes a string with "Mississippi". Then replace all "i" with
"ii" and print the length of the resulting string. In that string, replace all "ss" with "s"
and print the length of the resulting string.

• E2.4	 Write a program that constructs a rectangle with area 42 and a rectangle with perim-
eter 42. Print the widths and heights of both rectangles.

•• Testing E2.5	 Look into the API documentation of the Rectangle class and locate the method
void add(int newx, int newy)

Read through the method documentation. Then determine the result of the follow-
ing statements:

Rectangle box = new Rectangle(5, 10, 20, 30);
box.add(0, 0);

Write a program AddTester that prints the expected and actual location, width, and
height of box after the call to add.

•• Testing E2.6	 Write a program ReplaceTester that encodes a string by replacing all letters "i" with
"!" and all letters "s" with "$". Use the replace method. Demonstrate that you can
correctly encode the string "Mississippi". Print both the actual and expected result.

••• E2.7	 Write a program HollePrinter that switches the letters "e" and "o" in a string. Use the
replace method repeatedly. Demonstrate that the string "Hello, World!" turns into
"Holle, Werld!"

• Testing E2.8	 The StringBuilder class has a method for reversing a string.
In a ReverseTester class, construct a StringBuilder from a
given string (such as "desserts"), call the reverse method
followed by the toString method, and print the result. Also
print the expected value.

P R A C T I C E E X E R C I S E S

© PeskyMonkey/iStockphoto.

©
 P

es
ky

M
on

ke
y/

iS
to

ck
ph

ot
o.

Practice Exercises  73

•• E2.9	 In the Java library, a color is specified by its red, green, and blue components
between 0 and 255 (see Table 4 on page 66). Write a program BrighterDemo that
constructs a Color object with red, green, and blue values of 50, 100, and 150. Then
apply the brighter method of the Color class and print the red, green, and blue values
of the resulting color. (You won’t actually see the color—see Exercise E2.10 on how
to display the color.)

•• Graphics E2.10	 Repeat Exercise E2.9, but place your code into the following class. Then the color
will be displayed.

import java.awt.Color;
import javax.swing.JFrame;

public class BrighterDemo
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(200, 200);
 Color myColor = . . .;
 frame.getContentPane().setBackground(myColor);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

•• E2.11	 Repeat Exercise E2.9, but apply the darker method of the Color class twice to the
object Color.RED. Call your class DarkerDemo.

•• E2.12	 The Random class implements a random number generator, which produces sequences
of numbers that appear to be random. To generate random integers, you construct
an object of the Random class, and then apply the nextInt method. For example, the call
generator.nextInt(6) gives you a random number between 0 and 5.
Write a program DieSimulator that uses the Random class to simulate the cast of a die,
printing a random number between 1 and 6 every time that the program is run.

•• E2.13	 Write a program RandomPrice that prints a random price between $10.00 and $19.95
every time the program is run.

•• Testing E2.14	 Look at the API of the Point class and find out how to construct a Point object. In a
PointTester program, construct two points with coordinates (3, 4) and (–3, –4). Find
the distance between them, using the distance method. Print the distance, as well as
the expected value. (Draw a sketch on graph paper to find the value you will expect.)

• E2.15	 Using the Day class of Worked Example 2.1, write a DayTester program that constructs
a Day object representing today, adds ten days to it, and then computes the difference
between that day and today. Print the difference and the expected value.

•• E2.16	 Using the Picture class of Worked Example 2.2, write a HalfSizePicture program that
loads a picture and shows it at half the original size, centered in the window.

•• E2.17	 Using the Picture class of Worked Example 2.2, write a DoubleSizePicture program
that loads a picture, doubles its size, and shows the center of the picture in the
window.

•• Graphics E2.18	 Write a graphics program that draws two squares, both with the same center.
Provide a class TwoSquareViewer and a class TwoSquareComponent.

74  Chapter 2  Using Objects

•• Graphics E2.19	 Write a program that draws two solid squares: one in pink and one in purple. Use a
standard color for one of them and a custom color for the other. Provide a class
TwoSquareViewer and a class TwoSquareComponent.

•• Graphics E2.20	 Write a graphics program that draws your name in red, contained inside a blue
rectangle. Provide a class NameViewer and a class NameComponent.

•• P2.1	 Write a program called FourRectanglePrinter that constructs a Rectangle
object, prints its location by calling System.out.println(box), and then
translates and prints it three more times, so that, if the rectangles were
drawn, they would form one large rectangle, as shown at right.
Your program will not produce a drawing. It will simply print the
locations of the four rectangles.

•• P2.2	 Write a GrowSquarePrinter program that constructs a Rectangle object square repre
senting a square with top-left corner (100, 100) and side length 50, prints its location
by calling System.out.println(square), applies the translate and grow
methods, and calls System.out.println(square) again. The calls to
translate and grow should modify the square so that it has twice
the size and the same top-left corner as the original. If the squares
were drawn, they would look like the figure at right.
Your program will not produce a drawing. It will simply print the
locations of square before and after calling the mutator methods.
Look up the description of the grow method in the API documentation.

••• P2.3	 Write a CenteredSquaresPrinter program that constructs a Rectangle object square
representing a square with top-left corner (100, 100) and side length 200, prints its
location by calling System.out.println(square), applies the grow and
translate methods, and calls System.out.println(square) again. The
calls to grow and translate should modify the square so that it has
half the width and is centered in the original square. If the squares
were drawn, they would look like the figure at right. Your
program will not produce a drawing. It will simply print the
locations of square before and after calling the mutator methods.
Look up the description of the grow method in the API documentation.

••• P2.4	 The intersection method computes the intersection of two rectangles—that is, the
rectangle that would be formed by two overlapping rectangles if they were drawn, as
shown at right.
You call this method as follows:

Rectangle r3 = r1.intersection(r2);

Write a program IntersectionPrinter that constructs two
rectangle objects, prints them as described in Exercise P2.1,
and then prints the rectangle object that describes the
intersection. Then the program should print the result of the
intersection method when the rectangles do not overlap.
Add a comment to your program that explains how you can
tell whether the resulting rectangle is empty.

P R O G R A M M I N G P R O J E C T S

Intersection

Programming Projects  75

••• Graphics P2.5	 In this exercise, you will explore a simple way of visualizing a Rectangle object. The
setBounds method of the JFrame class moves a frame window to a given rectangle.
Complete the following program to visually show the translate method of the
Rectangle class:

import java.awt.Rectangle;
import javax.swing.JFrame;
import javax.swing.JOptionPane;

public class TranslateDemo
{
 public static void main(String[] args)
 {
 // Construct a frame and show it
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);

 // Your work goes here: Construct a rectangle and set the frame bounds

 JOptionPane.showMessageDialog(frame, "Click OK to continue");

 // Your work goes here: Move the rectangle and set the frame bounds again
 }
}

••• P2.6	 Write a program LotteryPrinter that picks a combination in a lottery. In this lottery,
players can choose 6 numbers (possibly repeated) between 1 and 49. Construct an
object of the Random class (see Exercise E2.12) and invoke an appropriate method to
generate each number. (In a real lottery, repetitions aren’t allowed, but we haven’t
yet discussed the programming constructs that would be required to deal with that
problem.) Your program should print out a sentence such as “Play this combina-
tion—it’ll make you rich!”, followed by a lottery combination.

•• P2.7	 Using the Day class of Worked Example 2.1, write a program that generates a Day
object representing February 28 of this year, and three more such objects that repre-
sent February 28 of the next three years. Advance each object by one day, and print
each object. Also print the expected values:

2016-02-29
Expected: 2016-02-29
2017-03-01
Expected: 2017-03-01
. . .

••• P2.8	 The GregorianCalendar class describes a point in time, as measured by the Gregorian
calendar, the standard calendar that is commonly used throughout the world today.
You construct a GregorianCalendar object from a year, month, and day of the month,
like this:

GregorianCalendar cal = new GregorianCalendar(); // Today’s date
GregorianCalendar eckertsBirthday = new GregorianCalendar(1919,
 Calendar.APRIL, 9);

Use the values Calendar.JANUARY . . . Calendar.DECEMBER to specify the month.
The add method can be used to add a number of days to a GregorianCalendar object:

cal.add(Calendar.DAY_OF_MONTH, 10); // Now cal is ten days from today

This is a mutator method—it changes the cal object.

© Feng Yu/iStockphoto.

©
 F

en
g

Y
u/

iS
to

ck
ph

ot
o.

76  Chapter 2  Using Objects

The get method can be used to query a given GregorianCalendar object:
int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH);
int month = cal.get(Calendar.MONTH);
int year = cal.get(Calendar.YEAR);
int weekday = cal.get(Calendar.DAY_OF_WEEK);
 // 1 is Sunday, 2 is Monday, . . . , 7 is Saturday

Your task is to write a program that prints:
•	 The date and weekday that is 100 days from today.
•	 The weekday of your birthday.
•	 The date that is 10,000 days from your birthday.

Use the birthday of a computer scientist if you don’t want to reveal your own.
Hint: The GregorianCalendar class is complex, and it is a really good idea to write a

few test programs to explore the API before tackling the whole problem. Start with
a program that constructs today’s date, adds ten days, and prints out the day of the
month and the weekday.

•• P2.9	 In Java 8, the LocalDate class describes a calendar date that does not depend on a
location or time zone. You construct a date like this:

LocalDate today = LocalDate.now(); // Today’s date
LocalDate eckertsBirthday = LocalDate(1919, 4, 9);

The plusDays method can be used to add a number of days to a LocalDate object:
LocalDate later = today.plusDays(10); // Ten days from today

This method does not mutate the today object, but it returns a new object that is a
given number of days away from today.
To get the year of a day, call

int year = today.getYear();

To get the weekday of a LocalDate, call
String weekday = today.getDayOfWeek().toString();

Your task is to write a program that prints
•	 The weekday of “Pi day”, that is, March 14, of the current year.
•	 The date and weekday of “Programmer’s day” in the current year; that is,

the 256th day of the year. (The number 256, or 28, is useful for some
programming tasks.)

•	 The date and weekday of the date that is 10,000 days earlier than today.

••• Testing P2.10	 Write a program LineDistanceTester that constructs a line joining the points (100, 100)
and (200, 200), then constructs points (100, 200), (150, 150), and (250, 50). Print the
distance from the line to each of the three points, using the ptSegDist method of the
Line2D class. Also print the expected values. (Draw a sketch on graph paper to find
what values you expect.)

•• Graphics P2.11	 Repeat Exercise P2.10, but now write a graphical application that shows the line and
the points. Draw each point as a tiny circle. Use the drawString method to draw each
distance next to the point, using calls

g2.drawString("Distance: " + distance, p.getX(), p.getY());

•• Graphics P2.12	 Write a graphics program that draws 12 strings, one each for the 12 standard colors
(except Color.WHITE), each in its own color. Provide a class ColorNameViewer and a class
ColorNameComponent.

© subjug/iStockphoto.

Answers to Self-Check Questions  77

•• Graphics P2.13	 Write a program to plot the face at right. Provide a class FaceViewer and a
class FaceComponent.

•• Graphics P2.14	 Write a graphical program that draws a traffic light.

•• Graphics P2.15	 Run the following program:
import java.awt.Color;
import javax.swing.JFrame;
import javax.swing.JLabel;

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(200, 200);
 JLabel label = new JLabel("Hello, World!");
 label.setOpaque(true);
 label.setBackground(Color.PINK);
 frame.add(label);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

Modify the program as follows:
•	 Double the frame size.
•	 Change the greeting to “Hello, your name!”.
•	 Change the background color to pale green (see Exercise E2.10).
•	 For extra credit, add an image of yourself. (Hint: Construct an ImageIcon.)

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 Objects with the same behavior belong to
the same class. A window lets in light while
protecting a room from the outside wind and
heat or cold. A water heater has completely
different behavior. It heats water. They belong
to different classes.

2.	 When one calls a method, one is not concerned
with how it does its job. As long as a light bulb
illuminates a room, it doesn’t matter to the
occupant how the photons are produced.

3.	 When you compile the program, you get an
error message that the String class doesn’t have
a println method.

4.	 There are three errors:
•	 You cannot have spaces in variable names.
•	 The variable type should be double because it

holds a fractional value.
•	 There is a semicolon missing at the end of the

statement.

5.	 double unitPrice = 1.95;
int quantity = 2;

6.	 System.out.print("Total price: ");
System.out.println(unitPrice * quantity);

7.	 int and String
8.	 double
9.	 Only the first two are legal identifiers.

10.	 String myName = "John Q. Public";
11.	 No, the left-hand side of the = operator must

be a variable.
12.	 greeting = "Hello, Nina!";

Note that
String greeting = "Hello, Nina!";

is not the right answer—that statement
declares a new variable.

13.	 Assignment would occur when one car is
replaced by another in the parking space.

14.	 river.length() or "Mississippi".length()

78  Chapter 2  Using Objects

15.	 System.out.println(greeting.toUpperCase());
or
System.out.println(
 "Hello, World!".toUpperCase());

16.	 It is not legal. The variable river has type
String. The println method is not a method of
the String class.

17.	 The arguments are the strings “p” and “s”.
18.	 "Missississi"
19.	 12
20.	 As public String toUpperCase(), with no argu-

ment and return type String.
21.	 new Rectangle(90, 90, 20, 20)
22.	 Rectangle box = new Rectangle(5, 10, 20, 30);

Rectangle box2 = new Rectangle(25, 10, 20, 30);

23.	 0
24.	 new PrintStream("output.txt");

25.	 PrintStream out = new PrintStream("output.txt");

26.	 Before: 5
After: 30

27.	 Before: 20
After: 20

Moving the rectangle does not affect its width
or height. You can change the width and
height with the setSize method.

28.	 HELLO
hello

Note that calling toUpperCase doesn’t modify
the string.

29.	 An accessor—it doesn’t modify the original
string but returns a new string with uppercase
letters.

30.	 box.translate(-5, -10), provided the method
is called immediately after storing the new
rectangle into box.

31.	 toLowerCase
32.	 "Hello, Space !"—only the leading and trailing

spaces are trimmed.
33.	 The arguments of the translate method tell

how far to move the rectangle in the x- and
y-directions. The arguments of the setLocation
method indicate the new x- and y-values for
the top-left corner.
For example, box.translate(1, 1) moves the box
one pixel down and to the right. box.setLoca-
tion(1, 1) moves box to the top-left corner of
the screen.

34.	 Add the statement import java.util.Random; at
the top of your program.

35.	 In the java.math package.
36.	 x: 30, y: 25
37.	 Because the translate method doesn’t modify

the shape of the rectangle.
38.	 Now greeting and greeting2 both refer to the

same String object.
39.	 Both variables still refer to the same string,

and the string has not been modified. Recall
that the toUpperCase method constructs a new
string that contains uppercase characters,
leaving the original string unchanged.

40.	 Modify the EmptyFrameViewer program
as follows:
frame.setSize(300, 300);
frame.setTitle("Hello, World!");

41.	 Construct two JFrame objects, set each of
their sizes, and call setVisible(true) on
each of them.

42.	 Change line 17 of RectangleComponent to
Rectangle box = new Rectangle(5, 10, 20, 20);

43.	 Replace the call to box.translate(15, 25) with
box = new Rectangle(20, 35, 20, 20);

44.	 The compiler complains that g doesn’t have a
draw method.

45.	 g2.draw(new Ellipse2D.Double(75, 75, 50, 50));
46.	 Line2D.Double segment1

 = new Line2D.Double(0, 0, 10, 30);
g2.draw(segment1);
Line2D.Double segment2
 = new Line2D.Double(10, 30, 20, 0);
g2.draw(segment2);

47.	 g2.drawString("V", 0, 30);
48.	 0, 0, 255
49.	 First fill a big red square, then fill a small yel-

low square inside:
g2.setColor(Color.RED);
g2.fill(new Rectangle(0, 0, 200, 200));
g2.setColor(Color.YELLOW);
g2.fill(new Rectangle(50, 50, 100, 100));

How Many Days Have You Been Alive?   WE1

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

As you can see from the API documentation (see figure on next page), you construct a Day
object from a given year, month, and day, like this:

Day jamesGoslingsBirthday = new Day(1955, 5, 19);

There is a method for adding days to a given day, for example:

Day later = jamesGoslingsBirthday.addDays(100);

You can then find out what the result is, by applying the getYear/getMonth/getDate methods:

System.out.println(later.getYear());
System.out.println(later.getMonth());
System.out.println(later.getDate());

However, that approach does not solve our problem (unless you are willing to replace 100
with other values until, by trial and error, you obtain today’s date). Instead, use the daysFrom
method. According to the API documentation, we need to supply another day. That is, the
method is called like this:

int daysAlive = day1.daysFrom(day2);

In our situation, one of the Day objects is jamesGoslingsBirthday, and the other is today’s date.
This can be obtained with the constructor that has no arguments:

Day today = new Day();

We have two candidates on which the daysFrom method could be invoked, yielding the call

int daysAlive = jamesGoslingsBirthday.daysFrom(today);
or

int daysAlive = today.daysFrom(jamesGoslingsBirthday);

© Tom Horyn/iStockphoto.

Worked Example 2.1	 How Many Days Have You Been Alive?

Many programs need to process dates such as “February
15, 2010”. The worked_example_1 directory of this chapter’s
companion code contains a Day class that was designed to
work with calendar days.

The Day class knows about the intricacies of our calen-
dar, such as the fact that January has 31 days and Febru-
ary has 28 or sometimes 29. The Julian calendar, instituted
by Julius Caesar in the first century bce, introduced the
rule that every fourth year is a leap year. In 1582, Pope
Gregory XIII ordered the implementation of the calen-
dar that is in common use throughout the world today,
called the Gregorian calendar. It refines the leap year rule
by specifying that years divisible by 100 are not leap years,
unless they are divisible by 400. Thus, the year 1900 was
not a leap year but the year 2000 was. All of these details
are handled by the internals of the Day class.

The Day class lets you answer questions such as
•	 How many days are there between now and the end of the year?
•	 What day is 100 days from now?

Problem Statement  Your task is to write a program that determines how many days
you have been alive. You should not look inside the internal implementation of the Day class.
Use the API documentation by pointing your browser to the file index.html in the ch02/
worked_example_1/api subdirectory.

© Constance Bannister Corp/Hulton Archive/Getty Images, Inc.

© Alex Slobodkin/iStockphoto.

©
 C

on
st

an
ce

 B
an

ni
st

er
 C

or
p/

H
ul

to
n

A
rc

hi
ve

/
G

et
ty

 I
m

ag
es

, I
nc

.

WE2  Chapter 2  Using Objects

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Which is the right choice? Fortunately, the author of the Day class has anticipated this question.
The detail comment of the daysFrom method contains this statement:

Returns: the number of days that this day is away from the other
(larger than 0 if this day comes later than other)

We want a positive result. Therefore, the second form is the correct one.
Here is the program that solves our problem (see ch02/worked_example_1 in your source

code):

worked_example_1/DaysAlivePrinter.java

1 public class DaysAlivePrinter
2 {
3 public static void main(String[] args)
4 {
5 Day jamesGoslingsBirthday = new Day(1955, 5, 19);
6 Day today = new Day();
7 System.out.print("Today: ");
8 System.out.println(today.toString());
9 int daysAlive = today.daysFrom(jamesGoslingsBirthday);

How Many Days Have You Been Alive?   WE3

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

10 System.out.print("Days alive: ");
11 System.out.println(daysAlive);
12 }
13 }

Program Run

Today: 2015-02-09
Days alive: 21826

Working with Pictures   WE5

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Cay Horstmann.

Your task is to write a program that reads in an image, shrinks it, and adds a border. Shrink it
sufficiently so that there is a transparent border inside the black border, as in the figure below.

Cay Horstmann.

© Tom Horyn/iStockphoto.

Worked Example 2.2	 Working with Pictures

Problem Statement  Edit and display image files in the Picture class found in the ch02/
worked_example_2 directory of this chapter’s companion code.

For example, the following program simply shows the image given below:

public class PictureDemo
{
 public static void main(String[] args)
 {
 Picture pic = new Picture();
 pic.load(“queen-mary.png”);
 }
}

C
ay

 H
or

st
m

an
n.

C
ay

 H
or

st
m

an
n.

bj6_ch02.indd 5 5/19/15 3:44 PM

WE6  Chapter 2  Using Objects

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

You should not look inside the internal implementation of the Picture class. Instead, use the
API documentation by pointing your browser to the file index.html in the worked_example_2/
picture/api subdirectory.

The API contains a number of methods that are unrelated to the task, but two of the methods
are clearly useful:

public void scale(int newWidth, int newHeight)
public void border(int width)

If the method comments are not clear, it is a good idea to write a couple of simple test pro-
grams to see their effect. For example, this program demonstrates the scale method:

public class PictureScaleDemo
{
 public static void main(String[] args)
 {
 Picture pic = new Picture();
 pic.load("queen-mary.png");
 pic.scale(200, 200);
 }
}

bj6_ch02.indd 6 5/19/15 3:44 PM

Working with Pictures   WE7

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Here is the result:

Cay Horstmann.

As you can see, the picture has been resized to a 200 × 200 pixel square.
That’s not quite what we want. We want the picture to be a bit smaller than the original.

Let’s say that the black border is 10 pixels thick, and we want another transparent border of 10
pixels. Then the target width and height are 40 pixels less than the original, leaving 20 pixels on
each side for the borders.

Looking at the API, we find methods for obtaining the original width and height. There-
fore, we will call

int newWidth = pic.getWidth() - 40;
int newHeight = pic.getHeight() - 40;
pic.scale(newWidth, newHeight);

Then we add the border:

pic.border(10);

The result is

Cay Horstmann.

If we can move the picture a bit before applying the border, we are done. Another look at the
API reveals a method

public void move(int dx, int dy)

C
ay

 H
or

st
m

an
n.

C
ay

 H
or

st
m

an
n.

bj6_ch02.indd 7 5/19/15 3:44 PM

WE8  Chapter 2  Using Objects

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

That’s just what we need. The picture needs to be moved 20 pixels down and to the right. Our
final program is

worked_example_2/BorderMaker.java

1 public class BorderMaker
2 {
3 public static void main(String[] args)
4 {
5 Picture pic = new Picture();
6 pic.load("queen-mary.png");
7 int newWidth = pic.getWidth() - 40;
8 int newHeight = pic.getHeight() - 40;
9 pic.scale(newWidth, newHeight);

10 pic.move(20, 20);
11 pic.border(10);
12 }
13 }

Couldn’t we have achieved the same result with an image editing program such as Photoshop
or GIMP? Yes, but it is an easy matter to extend this program so that it can automatically apply
a border to any number of images.

3C H A P T E R

79

© Kris Hanke/iStockphoto.

IMPLEMENTING
CLASSES

To become familiar with the process of
implementing classes

To be able to implement and test
simple methods

To understand the purpose and use
of constructors

To understand how to access instance variables and
local variables

To be able to write javadoc comments

To implement classes for drawing graphical shapes

CHAPTER GOALS

CHAPTER CONTENTS

3.1  INSTANCE VARIABLES AND
ENCAPSULATION  80

SYN 	 Instance Variable Declaration  81

3.2  SPECIFYING THE PUBLIC INTERFACE
OF A CLASS  84

SYN 	 Class Declaration  87
CE 1 	 Declaring a Constructor as void  90
PT 1 	 The javadoc Utility  90

3.3  PROVIDING THE CLASS
IMPLEMENTATION  91

CE 2 	 Ignoring Parameter Variables  96
HT 1 	 Implementing a Class  96
WE 1 	 Making a Simple Menu 

© Alex Slobodkin/iStockphoto.
3.4  UNIT TESTING  100

C&S 	 Electronic Voting Machines  102

3.5  PROBLEM SOLVING: TRACING
OBJECTS  103

3.6  LOCAL VARIABLES  105

CE 3 	 Duplicating Instance Variables in Local
Variables  106

CE 4 	 Providing Unnecessary Instance
Variables  106

CE 5 	 Forgetting to Initialize Object References in
a Constructor  107

3.7  THE THIS REFERENCE  107

ST 1 	 Calling One Constructor from
Another  110

3.8  SHAPE CLASSES  110

HT 2 	 Drawing Graphical Shapes  114

© Kris Hanke/iStockphoto.

80

© Kris Hanke/iStockphoto.

In this chapter, you will learn how to implement your own
classes. You will start with a given design that specifies
the public interface of the class—that is, the methods
through which programmers can manipulate the objects
of the class. Then you will learn the steps to completing
the class—creating the internal “workings” like the inside of
an air conditioner shown here. You need to implement the
methods, which entails finding a data representation for the
objects and supplying the instructions for each method. You
need to document your efforts so that other programmers
can understand and use your creation. And you need to
provide a tester to validate that your class works correctly.

3.1  Instance Variables and Encapsulation
In Chapter 1, you learned how to use objects
from existing classes. In this chapter, you will start
implementing your own classes. We begin with a
very simple example that shows you how objects
store their data, and how methods access the data of
an object. Our first example is a class that models
a tally counter, a mechanical device that is used to
count people—for example, to find out how many
people attend a concert or board a bus (see Figure 1).

3.1.1  Instance Variables

Whenever the operator clicks the button of a tally counter, the counter value advances
by one. We model this operation with a click method of a Counter class. A physical
counter has a display to show the current value. In our simulation, we use a getValue
method to get the current value. For example,

Counter tally = new Counter();
tally.click();
tally.click();
int result = tally.getValue(); // Sets result to 2

When implementing the Counter class, you need to determine the data that each coun-
ter object contains. In this simple example, that is very straightforward. Each counter
needs a variable that keeps track of the number of simulated button clicks.

An object stores its data in instance variables. An instance of a class is an object of
the class. Thus, an instance variable is a storage location that is present in each object
of the class.

You specify instance variables in the class declaration:
public class Counter
{
 private int value;
 . . .
}

Figure 1  A Tally Counter

Figure 1  A Tally Counter
© Jasmin Awad/iStockphoto.

An object’s instance
variables store
the data required
for executing
its methods.

© Kris Hanke/iStockphoto.

©
 J

as
m

in
 A

w
ad

/iS
to

ck
ph

ot
o.

3.1  Instance Variables and Encapsulation   81

Syntax 3.1	 Instance Variable Declaration

public class ClassName
{
 private typeName variableName;
 . . .
}

Syntax

public class Counter
{
 private int value;
 . . .
}

Each object of this class
has a separate copy of
this instance variable.Instance variables should

always be private.
Type of the variable

An instance variable declaration consists of the following parts:

•	 An access specifier (private)
•	 The type of the instance variable (such as int)
•	 The name of the instance variable (such as value)

Each object of a class has its own set of instance variables. For example, if concert-
Counter and boardingCounter are two objects of the Counter class, then each object has its
own value variable (see Figure 2). As you will see in Section 3.3, the instance variable
value is set to 0 when a Counter object is constructed.

Each object of a class
has its own set of
instance variables.

Figure 2 
Instance Variables

concertCounter =

value =

Counter

value =

CounterboardingCounter =

Instance
variables

These clocks have
common behavior, but
each of them has a
different state.
Similarly, objects of a
class can have their
instance variables set
to different values.

© Mark Evans/iStockphoto.

©
 M

ar
k

E
va

ns
/iS

to
ck

ph
ot

o.

82  Chapter 3  Implementing Classes

3.1.2  The Methods of the Counter Class

In this section, we will look at the implementation of the methods of the Counter class.
The click method advances the counter value by 1. You have seen the method

header syntax in Chapter 2. Now, focus on the body of the method inside the
braces.

public void click()
{
 value = value + 1;
}

Note how the click method accesses the instance variable value. Which instance vari-
able? The one belonging to the object on which the method is invoked. For example,
consider the call

concertCounter.click();

This call advances the value variable of the concertCounter object.
The getValue method returns the current value:
public int getValue()
{
 return value;
}

The return statement is a special statement that terminates the method call and returns
a result (the return value) to the method’s caller.

Instance variables are generally declared with the access specifier private. That
specifier means that they can be accessed only by the methods of the same class, not
by any other method. For example, the value variable can be accessed by the click
and getValue methods of the Counter class but not by a method of another class. Those
other methods need to use the Counter class methods if they want to manipulate a
counter’s internal data.

3.1.3  Encapsulation

In the preceding section, you learned that you should hide instance variables by mak-
ing them private. Why would a programmer want to hide something?

The strategy of information hiding is not unique to computer programming—it is
used in many engineering disciplines. Consider the thermostat that you find in your
home. It is a device that allows a user to set temperature preferences and that controls
the furnace and the air conditioner. If you ask your contractor what is inside the ther-
mostat, you will likely get a shrug.

The thermostat is a black box, something that magically does its thing. A contrac-
tor would never open the control module—it contains electronic parts that can only
be serviced at the factory. In general, engineers use the term “black box” to describe
any device whose inner workings are hidden. Note that a black box is not totally
mysterious. Its interface with the outside world is well-defined. For example, the
contractor understands how the thermostat must be connected with the furnace and
air conditioner.

The process of hiding implementation details while publishing an interface is
called encapsulation. In Java, the class construct provides encapsulation. The pub-
lic methods of a class are the interface through which the private implementation is
manipulated.

Private instance
variables can only be
accessed by methods
of the same class.

Encapsulation is the
process of hiding
implementation
details and providing
methods for
data access.

3.1  Instance Variables and Encapsulation   83

Why do contractors use prefabricated com-
ponents such as thermostats and furnaces?
These “black boxes” greatly simplify the work
of the contractor. In ancient times, builders had
to know how to construct furnaces from brick
and mortar, and how to produce some rudimen-
tary temperature controls. Nowadays, a con-
tractor just makes a trip to the hardware store,
without needing to know what goes on inside
the components.

Similarly, a programmer using a class is not
burdened by unnecessary detail, as you know
from your own experience. In Chapter 2,
you used classes for strings, streams, and windows without worrying how these
classes are implemented.

Encapsulation also helps with diagnosing errors. A large program may consist of
hundreds of classes and thousands of methods, but if there is an error with the inter-
nal data of an object, you only need to look at the methods of one class. Finally,
encapsulation makes it possible to change the implementation of a class without hav-
ing to tell the programmers who use the class.

In Chapter 2, you learned to be an object user. You saw how to obtain objects,
how to manipulate them, and how to assemble them into a program. In that chapter,
you treated objects as black boxes. Your role was roughly analogous to the contrac-
tor who installs a new thermostat.

In this chapter, you will move on to implementing classes. In these sections, your
role is analogous to the hardware manufacturer who puts together a thermostat from
buttons, sensors, and other electronic parts. You will learn the necessary Java pro-
gramming techniques that enable your objects to carry out the desired behavior.

section_1/Counter.java

1 /**
2 This class models a tally counter.
3 */
4 public class Counter
5 {
6 private int value;
7
8 /**
9 Gets the current value of this counter.

10 @return the current value
11 */
12 public int getValue()
13 {
14 return value;
15 }
16
17 /**
18 Advances the value of this counter by 1.
19 */
20 public void click()
21 {
22 value = value + 1;
23 }
24

© yenwen/iStockphoto.
A thermostat functions as a “black
box” whose inner workings are hidden.

Encapsulation allows
a programmer to use
a class without
having to know its
implementation.

Information hiding
makes it simpler for
the implementor of a
class to locate errors
and change
implementations.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to
download a demon­
stration of the
Counter class.

© Alex Slobodkin/iStockphoto.

©
 y

en
w

en
/iS

to
ck

ph
ot

o.

84  Chapter 3  Implementing Classes

25 /**
26 Resets the value of this counter to 0.
27 */
28 public void reset()
29 {
30 value = 0;
31 }
32 }

1.	 Supply the body of a method public void unclick() that undoes an unwanted
button click.

2.	 Suppose you use a class Clock with private instance variables hours and minutes.
How can you access these variables in your program?

3.	 Consider the Counter class. A counter’s value starts at 0 and is advanced by the
click method, so it should never be negative. Suppose you found a negative value
variable during testing. Where would you look for the error?

4.	 In Chapters 1 and 2, you used System.out as a black box to cause output to
appear on the screen. Who designed and implemented System.out?

5.	 Suppose you are working in a company that produces personal finance software.
You are asked to design and implement a class for representing bank accounts.
Who will be the users of your class?

Practice It	 Now you can try these exercises at the end of the chapter: R3.1, R3.3, E3.1.

3.2  Specifying the Public Interface of a Class
In the following sections, we will discuss the process of specifying the public inter-
face of a class. Imagine that you are a member of a team that works on banking soft-
ware. A fundamental concept in banking is a bank account. Your task is to design a
BankAccount class that can be used by other programmers to manipulate bank accounts.
What methods should you provide? What information should you give the program-
mers who use this class? You will want to settle these questions before you imple-
ment the class.

3.2.1  Specifying Methods

You need to know exactly what operations of a bank account need to be imple-
mented. Some operations are essential (such as taking deposits), whereas others are
not important (such as giving a gift to a customer who opens a bank account). Decid-
ing which operations are essential is not always an easy task. We will revisit that issue
in Chapters 8 and 12. For now, we will assume that a competent designer has
decided that the following are considered the essential operations of a bank account:

•	 Deposit money
•	 Withdraw money
•	 Get the current balance

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

In order to
implement a class,
you first need to
know which methods
are required.

3.2  Specifying the Public Interface of a Class   85

In Java, you call a method when you want to apply an operation to an object. To fig-
ure out the exact specification of the method calls, imagine how a programmer would
carry out the bank account operations. We’ll assume that the variable harrysChecking
contains a reference to an object of type BankAccount. We want to support method calls
such as the following:

harrysChecking.deposit(2240.59);
harrysChecking.withdraw(500);
double currentBalance = harrysChecking.getBalance();

The first two methods are mutators. They modify the balance of the bank account
and don’t return a value. The third method is an accessor. It returns a value that you
store in a variable or pass to a method.

From the sample calls, we decide the BankAccount class should declare three methods:

•	 public void deposit(double amount)
•	 public void withdraw(double amount)
•	 public double getBalance()

Recall from Chapter 12 that double denotes the double-precision floating-point
type, and void indicates that a method does not return a value.

Here we only give the method headers. When you declare a method, you also need
to provide the method body, which consists of statements that are executed when the
method is called.

public void deposit(double amount)
{
 method body—implementation filled in later
}

We will supply the method bodies in Section 3.3.
Note that the methods have been declared as public, indicating that all other meth-

ods in a program can call them. Occasionally, it can be useful to have private methods.
They can only be called from other methods of the same class.

Some people like to fill in the bodies so that they compile, like this:
public double getBalance()
{
 // TODO: fill in implementation
 return 0;
}

That is a good idea if you compose your method specification in your development
environment––you won’t get warnings about incorrect code.

3.2.2  Specifying Constructors

As you know from Chapter 2, constructors are used to initialize objects. In Java, a
constructor is very similar to a method, with two important differences:

•	 The name of the constructor is always the same as the name of the class (e.g.,
BankAccount).

•	 Constructors have no return type (not even void).

We want to be able to construct bank accounts that initially have a zero balance, as
well as accounts that have a given initial balance.

Constructors set
the initial data
for objects.

86  Chapter 3  Implementing Classes

For this purpose, we specify two constructors:

•	 public BankAccount()
•	 public BankAccount(double initialBalance)

They are used as follows:
BankAccount harrysChecking = new BankAccount();
BankAccount momsSavings = new BankAccount(5000);

Don’t worry about the fact that there are two constructors with the same name—all
constructors of a class have the same name, that is, the name of the class. The compiler
can tell them apart because they take different arguments. The first constructor takes
no arguments at all. Such a constructor is called a no-argument constructor. The
second constructor takes an argument of type double.

Just like a method, a constructor also has a body—a sequence of statements that is
executed when a new object is constructed.

public BankAccount()
{
 constructor body—implementation filled in later
}

The statements in the constructor body will set the instance variables of the object
that is being constructed—see Section 3.3.

When declaring a class, you place all constructor and method declarations inside,
like this:

public class BankAccount
{
 private instance variables—filled in later

 // Constructors
 public BankAccount()
 {
 implementation—filled in later
 }

 public BankAccount(double initialBalance)
 {
 implementation—filled in later
 }

 // Methods
 public void deposit(double amount)
 {
 implementation—filled in later
 }

 public void withdraw(double amount)
 {
 implementation—filled in later
 }

 public double getBalance()
 {
 implementation—filled in later
 }
}

The constructor
name is always
the same as the
class name.

3.2  Specifying the Public Interface of a Class   87

Syntax 3.2	 Class Declaration

accessSpecifier class ClassName
{
 instance variables
 constructors
 methods
}

Syntax

public class Counter
{
 private int value;

 public Counter(int initialValue) { value = initialValue; }

 public void click() { value = value + 1; }
 public int getValue() { return value; }
}

Public interface
Private

implementation

The public constructors and methods of a class form the public interface of the class.
These are the operations that any programmer can use to create and manipulate
BankAccount objects.

3.2.3  Using the Public Interface

Our BankAccount class is simple, but it allows programmers to carry out all of the
important operations that commonly occur with bank accounts. For example, con-
sider this program segment, authored by a programmer who uses the BankAccount class.
These statements transfer an amount of money from one bank account to another:

// Transfer from one account to another
double transferAmount = 500;
momsSavings.withdraw(transferAmount);
harrysChecking.deposit(transferAmount);

And here is a program segment that adds interest to a savings account:
double interestRate = 5; // 5 percent interest
double interestAmount = momsSavings.getBalance() * interestRate / 100;
momsSavings.deposit(interestAmount);

As you can see, programmers can use objects of the BankAccount class to carry out
meaningful tasks, without knowing how the BankAccount objects store their data or
how the BankAccount methods do their work.

Of course, as implementors of the BankAccount class, we will need to supply the pri-
vate implementation. We will do so in Section 3.3. First, however, an important step
remains: documenting the public interface. That is the topic of the next section.

3.2.4  Commenting the Public Interface

When you implement classes and methods, you should get into the habit of thor-
oughly commenting their behaviors. In Java there is a very useful standard form for

88  Chapter 3  Implementing Classes

documentation comments. If you use this form in your classes, a program called
javadoc can automatically generate a neat set of HTML pages that describe them.
(See Programming Tip 3.1 on page 90 for a description of this utility.)

A documentation comment is placed before the class or method declaration that is
being documented. It starts with a /**, a special comment delimiter used by the java-
doc utility. Then you describe the method’s purpose. Then, for each argument, you
supply a line that starts with @param, followed by the name of the variable that holds
the argument (which is called a parameter variable). Supply a short explanation
for each argument after the variable name. Finally, you supply a line that starts with
@return, describing the return value. You omit the @param tag for methods that have no
arguments, and you omit the @return tag for methods whose return type is void.

The javadoc utility copies the first sentence of each comment to a summary table in
the HTML documentation. Therefore, it is best to write that first sentence with some
care. It should start with an uppercase letter and end with a period. It does not have to
be a grammatically complete sentence, but it should be meaningful when it is pulled
out of the comment and displayed in a summary.

Here are two typical examples:

/**
 Withdraws money from the bank account.
 @param amount the amount to withdraw
*/
public void withdraw(double amount)
{
 implementation—filled in later
}

/**
 Gets the current balance of the bank account.
 @return the current balance
*/
public double getBalance()
{
 implementation—filled in later
}

The comments you have just seen explain individual methods. Supply a brief com-
ment for each class, too, explaining its purpose. Place the documentation comment
above the class declaration:

/**
 A bank account has a balance that can be changed by
 deposits and withdrawals.
*/
public class BankAccount
{
 . . .
}

Your first reaction may well be “Whoa! Am I supposed to write all this stuff?” Some-
times, documentation comments seem pretty repetitive, but in most cases, they are
informative. Even with seemingly repetitive comments, you should take the time to
write them.

It is always a good idea to write the method comment first, before writing the code
in the method body. This is an excellent test to see that you firmly understand what

Use documentation
comments to
describe the classes
and public methods
of your programs.

3.2  Specifying the Public Interface of a Class   89

you need to program. If you can’t explain what a class or method does, you aren’t
ready to implement it.

What about very simple methods? You can easily spend more time pondering
whether a comment is too trivial to write than it takes to write it. In practical pro-
gramming, very simple methods are rare. It is harmless to have a trivial method over-
commented, whereas a complicated method without any comment can cause real
grief to future maintenance programmers. According to the standard Java documen-
tation style, every class, every method, every parameter variable, and every return
value should have a comment.

The javadoc utility formats your comments into a neat set of documents that you
can view in a web browser. It makes good use of the seemingly repetitive phrases. The
first sentence of the comment is used for a summary table of all methods of your class
(see Figure 3). The @param and @return comments are neatly formatted in the detail
description of each method (see Figure 4). If you omit any of the comments, then
javadoc generates documents that look strangely empty.

Provide documen­
tation comments
for every class,
every method,
every parameter
variable, and every
return value.

Figure 3  A Method Summary Generated by javadoc

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down­
load the BankAccount
class with documen­
tation but without
implementation.

© Alex Slobodkin/iStockphoto.

Figure 4  Method Detail Generated by javadoc

90  Chapter 3  Implementing Classes

This documentation format should look familiar. The programmers who imple-
ment the Java library use javadoc themselves. They too document every class, every
method, every parameter variable, and every return value, and then use javadoc to
extract the documentation in HTML format.

6.	 How can you use the methods of the public interface to empty the harrysChecking
bank account?

7.	 What is wrong with this sequence of statements?
BankAccount harrysChecking = new BankAccount(10000);
System.out.println(harrysChecking.withdraw(500));

8.	 Suppose you want a more powerful bank account abstraction that keeps track of
an account number in addition to the balance. How would you change the
public interface to accommodate this enhancement?

9.	 Suppose we enhance the BankAccount class so that each account has an account
number. Supply a documentation comment for the constructor
public BankAccount(int accountNumber, double initialBalance)

10.	 Why is the following documentation comment questionable?
/**
 Each account has an account number.
 @return the account number of this account
*/
public int getAccountNumber()

Practice It	 Now you can try these exercises at the end of the chapter: R3.7, R3.8, R3.9.

Declaring a Constructor as void

Do not use the void reserved word when you declare a constructor:

public void BankAccount() // Error—don’t use void!

This would declare a method with return type void and not a constructor. Unfortunately, the
Java compiler does not consider this a syntax error.

The javadoc Utility

Always insert documentation comments in your code, whether or not you use javadoc to pro-
duce HTML documentation. Most people find the HTML documentation convenient, so it
is worth learning how to run javadoc. Some programming environments (such as BlueJ) can
execute javadoc for you. Alternatively, you can invoke the javadoc utility from a shell window,
by issuing the command

javadoc MyClass.java

or, if you want to document multiple Java files,

javadoc *.java

The javadoc utility produces files such as MyClass.html in HTML format, which you can inspect
in a browser. If you know HTML (see Appendix H), you can embed HTML tags into the

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Common Error 3.1

© John Bell/iStockphoto.

Programming Tip 3.1

© Eric Isselé/iStockphoto.

3.3  Providing the Class Implementation   91

comments to specify fonts or add images. Perhaps most importantly, javadoc automatically
provides hyperlinks to other classes and methods.

You can run javadoc before implementing any methods. Just leave all the method bodies
empty. Don’t run the compiler—it would complain about missing return values. Simply run
javadoc on your file to generate the documentation for the public interface that you are about
to implement.

The javadoc tool is wonderful because it does one thing right: It allows you to put the docu-
mentation together with your code. That way, when you update your programs, you can see
right away which documentation needs to be updated. Hopefully, you will update it right then
and there. Afterward, run javadoc again and get updated information that is timely and nicely
formatted.

3.3  Providing the Class Implementation
Now that you understand the specification of the public interface of the BankAccount
class, let’s provide the implementation.

3.3.1  Providing Instance Variables

First, we need to determine the data that each bank account object contains. In the
case of our simple bank account class, each object needs to store a single value, the
current balance. (A more complex bank account class might store additional data—
perhaps an account number, the interest rate paid, the date for mailing out the next
statement, and so on.)

public class BankAccount
{
 private double balance;
 // Methods and constructors below
 . . .
}

In general, it can be challenging to find a good
set of instance variables. Ask yourself what an
object needs to remember so that it can carry
out any of its methods.

Like a wilderness explorer who needs to carry all
items that may be needed, an object needs to store
the data required for its method calls.

The private
implementation of
a class consists of
instance variables,
and the bodies
of constructors
and methods.

© iStockphoto.com/migin.

©
 iS

to
ck

ph
ot

o.
co

m
/m

ig
in

.

92  Chapter 3  Implementing Classes

3.3.2  Providing Constructors

A constructor has a simple job: to initialize the instance variables of an object.
Recall that we designed the BankAccount class to have two constructors. The first

constructor simply sets the balance to zero:
public BankAccount()
{
 balance = 0;
}

The second constructor sets the balance to the value supplied as the construction
argument:

public BankAccount(double initialBalance)
{
 balance = initialBalance;
}

To see how these constructors work, let us trace the statement
BankAccount harrysChecking = new BankAccount(1000);

one step at a time.
Here are the steps that are carried out when the statement executes (see Figure 5):

•	 Create a new object of type BankAccount. 1

•	 Call the second constructor (because an argument is supplied in the
constructor call).

•	 Set the parameter variable initialBalance to 1000. 2

•	 Set the balance instance variable of the newly created object
to initialBalance. 3

•	 Return an object reference, that is, the memory location of the object,
as the value of the new expression.

•	 Store that object reference in the harrysChecking variable. 4

In general, when you implement constructors, be sure that each constructor initial-
izes all instance variables, and that you make use of all parameter variables (see Com-
mon Error 3.2 on page 96).

A constructor is like a set of
assembly instructions for an object.

© Ann Marie Kurtz/iStockphoto.

©
 A

nn
 M

ar
ie

 K
ur

tz
/iS

to
ck

ph
ot

o.

3.3  Providing the Class Implementation   93

3.3.3 

Figure 5 
How a Constructor Works

2

1

initialBalance =

balance =

BankAccount

balance =

BankAccount

1000

4 harrysChecking =

balance =

BankAccount

3
initialBalance =

balance =

BankAccount

1000

1000

1000

Providing Methods

In this section, we finish implementing the methods of the BankAccount class.
When you implement a method, ask yourself whether it is an accessor or mutator

method. A mutator method needs to update the instance variables in some way. An
accessor method retrieves or computes a result.

Here is the deposit method. It is a mutator method, updating the balance:
public void deposit(double amount)
{
 balance = balance + amount;
}

The withdraw method is very similar to the deposit method:
public void withdraw(double amount)
{
 balance = balance - amount;
}  

94  Chapter 3  Implementing Classes

Table 1 Implementing Classes

Example Comments

public class BankAccount { . . . } This is the start of a class declaration. Instance variables,
methods, and constructors are placed inside the braces.

private double balance; This is an instance variable of type double. Instance variables
should be declared as private.

public double getBalance() { . . . } This is a method declaration. The body of the method must
be placed inside the braces.

. . . { return balance; } This is the body of the getBalance method. The return
statement returns a value to the caller of the method.

public void deposit(double amount) { . . . } This is a method with a parameter variable (amount). Because
the method is declared as void, it has no return value.

. . . { balance = balance + amount; } This is the body of the deposit method. It does not have a
return statement.

public BankAccount() { . . . } This is a constructor declaration. A constructor has the same
name as the class and no return type.

. . . { balance = 0; } This is the body of the constructor. A constructor should
initialize the instance variables.

There is one method left, getBalance. Unlike the deposit and withdraw methods, which
modify the instance variable of the object on which they are invoked, the getBalance
method returns a value:

public double getBalance()
{
 return balance;
}

We have now completed the implementation of the BankAccount class—see the code
listing below. There is only one step remaining: testing that the class works correctly.
That is the topic of the next section.

section_3/BankAccount.java

1 /**
2 A bank account has a balance that can be changed by
3 deposits and withdrawals.
4 */
5 public class BankAccount
6 {
7 private double balance;
8
9 /**

10 Constructs a bank account with a zero balance.
11 */
12 public BankAccount()
13 {
14 balance = 0;
15 }

3.3  Providing the Class Implementation   95

16
17 /**
18 Constructs a bank account with a given balance.
19 @param initialBalance the initial balance
20 */
21 public BankAccount(double initialBalance)
22 {
23 balance = initialBalance;
24 }
25
26 /**
27 Deposits money into the bank account.
28 @param amount the amount to deposit
29 */
30 public void deposit(double amount)
31 {
32 balance = balance + amount;
33 }
34
35 /**
36 Withdraws money from the bank account.
37 @param amount the amount to withdraw
38 */
39 public void withdraw(double amount)
40 {
41 balance = balance - amount;
42 }
43
44 /**
45 Gets the current balance of the bank account.
46 @return the current balance
47 */
48 public double getBalance()
49 {
50 return balance;
51 }
52 }

11.	 Suppose we modify the BankAccount class so that each bank account has an
account number. How does this change affect the instance variables?

12.	 Why does the following code not succeed in robbing mom’s bank account?
public class BankRobber
{
 public static void main(String[] args)
 {
 BankAccount momsSavings = new BankAccount(1000);
 momsSavings.balance = 0;
 }
}

13.	 The Rectangle class has four instance variables: x, y, width, and height. Give a pos-
sible implementation of the getWidth method.

14.	 Give a possible implementation of the translate method of the Rectangle class.

Practice It	 Now you can try these exercises at the end of the chapter: R3.4, R3.10, E3.7.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

96  Chapter 3  Implementing Classes

Ignoring Parameter Variables

A surprisingly common beginner’s error is to ignore parameter variables of methods or con-
structors. This usually happens when an assignment gives an example with specific values. For
example, suppose you are asked to provide a class Letter with a recipient and a sender, and you
are given a sample letter like this:

Dear John:

I am sorry we must part.
I wish you all the best.

Sincerely,

Mary

Now look at this incorrect attempt:

public class Letter
{
 private String recipient;
 private String sender;

 public Letter(String aRecipient, String aSender)
 {
 recipient = "John"; // Error—should use parameter variable
 sender = "Mary"; // Same error
 }
 . . .
}

The constructor ignores the names of the recipient and sender arguments that were provided
to the constructor. If a user constructs a

new Letter("John", "Yoko")

the sender is still set to "Mary", which is bound to be embarrassing.
The constructor should use the parameter variables, like this:

public Letter(String aRecipient, String aSender)
{
 recipient = aRecipient;
 sender = aSender;
}

Common Error 3.2

© John Bell/iStockphoto.

© Steve Simzer/iStockphoto.

How To 3.1	 Implementing a Class

This “How To” section tells you how you
implement a class from a given specification.

Problem Statement  Implement a class
that models a self-service cash register. The
customer scans the price tags and deposits
money in the machine. The machine dis-
penses the change.

© Z5006 Karlheinz Schindler Deutsche Presse Agentur/NewsCom.

©
 Z

50
06

 K
ar

lh
ei

nz
 S

ch
in

dl
er

 D
eu

ts
ch

e

P
re

ss
e

A
ge

nt
ur

/N
ew

sC
om

.

3.3  Providing the Class Implementation   97

Step 1	 Find out which methods you are asked to supply.

In a simulation, you won’t have to provide every feature that occurs in the real world—there
are too many. In the cash register example, we don’t deal with sales tax or credit card payments.
The assignment tells you which aspects of the self-service cash register your class should simu-
late. Make a list of them:
•	 Process the price of each purchased item.
•	 Receive payment.
•	 Calculate the amount of change due to the customer.

Step 2	 Specify the public interface.

Turn the list in Step 1 into a set of methods, with specific types for the parameter variables and
the return values. Many programmers find this step simpler if they write out method calls that
are applied to a sample object, like this:

CashRegister register = new CashRegister();
register.recordPurchase(29.95);
register.recordPurchase(9.95);
register.receivePayment(50);
double change = register.giveChange();

Now we have a specific list of methods:
•	 public void recordPurchase(double amount)
•	 public void receivePayment(double amount)
•	 public double giveChange()
To complete the public interface, you need to specify the constructors. Ask yourself what
information you need in order to construct an object of your class. Sometimes you will want
two constructors: one that sets all instance variables to a default and one that sets them to user-
supplied values.

In the case of the cash register example, we can get by with a single constructor that creates
an empty register. A more realistic cash register might start out with some coins and bills so
that we can give exact change, but that is well beyond the scope of our assignment.

Thus, we add a single constructor:
•	 public CashRegister()

Step 3	 Document the public interface.

Here is the documentation, with comments, that describes the class and its methods:

/**
 A cash register totals up sales and computes change due.
*/
public class CashRegister
{
 /**
 Constructs a cash register with no money in it.
 */
 public CashRegister()
 {
 }

 /**
 Records the sale of an item.
 @param amount the price of the item
 */
 public void recordPurchase(double amount)
 {

98  Chapter 3  Implementing Classes

 }

 /**
 Processes a payment received from the customer.
 @param amount the amount of the payment
 */
 public void receivePayment(double amount)
 {
 }

 /**
 Computes the change due and resets the machine for the next customer.
 @return the change due to the customer
 */
 public double giveChange()
 {
 }
}

Step 4	 Determine instance variables.

Ask yourself what information an object needs to store to do its job. Remember, the methods
can be called in any order. The object needs to have enough internal memory to be able to
process every method using just its instance variables and the parameter variables. Go through
each method, perhaps starting with a simple one or an interesting one, and ask yourself what
you need to carry out the method’s task. Make instance variables to store the information that
the method needs.

Just as importantly, don’t introduce unnecessary instance variables (see Common Error 3.3
on page 106). If a value can be computed from other instance variables, it is generally better to
compute it on demand than to store it.

In the cash register example, you need to keep track of the total purchase amount and the
payment. You can compute the change due from these two amounts.

public class CashRegister
{
 private double purchase;
 private double payment;
 . . .
}

Step 5	 Implement constructors and methods.

Implement the constructors and methods in your class, one at a time, starting with the easiest
ones. Here is the implementation of the recordPurchase method:

public void recordPurchase(double amount)
{
 purchase = purchase + amount;
}

The receivePayment method looks almost the same,

public void receivePayment(double amount)
{
 payment = payment + amount;
}

but why does the method add the amount, instead of simply setting payment = amount? A cus-
tomer might provide two separate payments, such as two $10 bills, and the machine must
process them both. Remember, methods can be called more than once, and they can be called
in any order.

3.3  Providing the Class Implementation   99

Finally, here is the giveChange method. This method is a bit more sophisticated—it com-
putes the change due, and it also resets the cash register for the next sale.

public double giveChange()
{
 double change = payment - purchase;
 purchase = 0;
 payment = 0;
 return change;
}

If you find that you have trouble with the implementation, you may need to rethink your
choice of instance variables. It is common for a beginner to start out with a set of instance vari-
ables that cannot accurately reflect the state of an object. Don’t hesitate to go back and add or
modify instance variables.

You can find the complete implementation in the how_to_1 directory of the book’s compan-
ion code.

Step 6	 Test your class.

Write a short tester program and execute it. The tester program should carry out the method
calls that you found in Step 2.

public class CashRegisterTester
{
 public static void main(String[] args)
 {
 CashRegister register = new CashRegister();

 register.recordPurchase(29.50);
 register.recordPurchase(9.25);
 register.receivePayment(50);

 double change = register.giveChange();

 System.out.println(change);
 System.out.println("Expected: 11.25");
 }
}

The output of this test program is:

11.25
Expected: 11.25

© Tom Horyn/iStockphoto.

Worked Example 3.1	 Making a Simple Menu

Learn how to implement a class that constructs simple
text-based menus. Go to wiley.com/go/bjeo6examples and
download Worked Example 3.1.

© Mark Evans/iStockphoto.

© Alex Slobodkin/iStockphoto.

©
 M

ar
k

E
va

ns
/iS

to
ck

ph
ot

o.

100  Chapter 3  Implementing Classes 	 Testing Track

3.4  Unit Testing
In the preceding section, we completed the imple-
mentation of the BankAccount class. What can you
do with it? Of course, you can compile the file
BankAccount.java. However, you can’t execute the
resulting BankAccount.class file. It doesn’t contain
a main method. That is normal—most classes don’t
contain a main method.

In the long run, your class may become a part
of a larger program that interacts with users, stores
data in files, and so on. However, before integrat-
ing a class into a program, it is always a good idea
to test it in isolation. Testing in isolation, outside a
complete program, is called unit testing.

To test your class, you have two choices. Some
interactive development environments have com-
mands for constructing objects and invoking methods (see Special Topic 2.1). Then
you can test a class simply by constructing an object, calling methods, and verifying
that you get the expected return values. Figure 6 shows the result of calling the get
Balance method on a BankAccount object in BlueJ.

Alternatively, you can write a tester class. A tester class is a class with a main method
that contains statements to run methods of another class. As discussed in Section 2.7,
a tester class typically carries out the following steps:

1.	Construct one or more objects of the class that is being tested.
2.	Invoke one or more methods.
3.	Print out one or more results.
4.	Print the expected results.

© Chris Fertnig/iStockphoto.
An engineer tests a part in isolation.
This is an example of unit testing.

A unit test verifies
that a class works
correctly in isolation,
outside a complete
program.

To test a class, use
an environment for
interactive testing,
or write a tester
class to execute
test instructions.

Figure 6  The Return Value of the getBalance Method in BlueJ

©
 C

hr
is

 F
er

tn
ig

/iS
to

ck
ph

ot
o.

Testing Track 3.4  Unit Testing   101

The MoveTester class in Section 2.7 is a good example of a tester class. That class runs
methods of the Rectangle class—a class in the Java library.

Following is a class to run methods of the BankAccount class. The main method con-
structs an object of type BankAccount, invokes the deposit and withdraw methods, and
then displays the remaining balance on the console.

We also print the value that we expect to see. In our sample program, we deposit
$2,000 and withdraw $500. We therefore expect a balance of $1,500.

section_4/BankAccountTester.java

1 /**
2 A class to test the BankAccount class.
3 */
4 public class BankAccountTester
5 {
6 /**
7 Tests the methods of the BankAccount class.
8 @param args not used
9 */

10 public static void main(String[] args)
11 {
12 BankAccount harrysChecking = new BankAccount();
13 harrysChecking.deposit(2000);
14 harrysChecking.withdraw(500);
15 System.out.println(harrysChecking.getBalance());
16 System.out.println("Expected: 1500");
17 }
18 }

Program Run

1500
Expected: 1500

To produce a program, you need to combine the BankAccount and the BankAccountTester
classes. The details for building the program depend on your compiler and develop-
ment environment. In most environments, you need to carry out these steps:

1.	Make a new subfolder for your program.
2.	Make two files, one for each class.
3.	Compile both files.
4.	Run the test program.

Many students are surprised that such a simple program contains two classes. How-
ever, this is normal. The two classes have entirely different purposes. The BankAccount
class describes objects that compute bank balances. The BankAccountTester class runs a
test that puts a BankAccount object through its paces.

15.	 When you run the BankAccountTester program, how many objects of class Bank
Account are constructed? How many objects of type BankAccountTester?

16.	 Why is the BankAccountTester class unnecessary in development environments
that allow interactive testing, such as BlueJ?

Practice It	 Now you can try these exercises at the end of the chapter: E3.6, E3.13.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

102  Chapter 3  Implementing Classes

Computing & Society 3.1  Electronic Voting Machines

In the 2000 presiden­
tial elections in the

United States, votes were tallied by a
variety of machines. Some machines
processed cardboard ballots into which
voters punched holes to indicate their
choices (see below). When voters were
not careful, remains of paper—the now
infamous “chads”—were partially stuck
in the punch cards, causing votes to be
miscounted. A manual recount was
necessary, but it was not carried out
everywhere due to time constraints
and procedural wrangling. The election
was very close, and there remain
doubts in the minds of many people
whether the election outcome would
have been different if the voting
machines had accurately counted the
intent of the voters.

© Peter Nguyen/iStockphoto.
Punch Card Ballot

Subsequently, voting machine man­
ufacturers have argued that electronic
voting machines would avoid the prob­
lems caused by punch cards or opti­
cally scanned forms. In an electronic
voting machine, voters indicate their
preferences by pressing buttons or
touching icons on a computer screen.
Typically, each voter is presented with
a summary screen for review before
casting the ballot. The process is very
similar to using a bank’s automated
teller machine.

It seems plausible that these
machines make it more likely that a
vote is counted in the same way that
the voter intends. However, there has
been significant controversy surround­
ing some types of electronic voting

machines. If a machine simply records
the votes and prints out the totals after
the election has been completed, then
how do you know that the machine
worked correctly? Inside the machine
is a computer that executes a program,
and, as you may know from your own
experience, programs can have bugs.

In fact, some electronic voting
machines do have bugs. There have
been isolated cases where machines
reported tallies that were impossible.
When a machine reports far more or far
fewer votes than voters, then it is clear
that it malfunctioned. Unfortunately, it
is then impossible to find out the actual
votes. Over time, one would expect
these bugs to be fixed in the software.
More insidiously, if the results are plau­
sible, nobody may ever investigate.

Many computer scientists have spo­
ken out on this issue and confirmed
that it is impossible, with today’s tech­
nology, to tell that software is error
free and has not been tampered with.
Many of them recommend that elec­
tronic voting machines should employ
a voter-verifiable audit trail. (A good
source of information is http://veri-
fiedvoting.org.) Typically, a voter-veri­
fiable machine prints out a ballot. Each
voter has a chance to review the print­
out, and then deposits it in an old-fash­
ioned ballot box. If there is a problem

with the electronic equipment, the
printouts can be scanned or counted
by hand.

As this book is written, this con­
cept is strongly resisted both by
manufacturers of electronic voting
machines and by their customers, the
cities and counties that run elections.
Manufacturers are reluctant to increase
the cost of the machines because
they may not be able to pass the cost
increase on to their customers, who
tend to have tight budgets. Election
officials fear problems with malfunc­
tioning printers, and some of them
have publicly stated that they actually
prefer equipment that eliminates both­
ersome recounts.

What do you think? You probably
use an automated bank teller machine
to get cash from your bank account.
Do you review the paper record that
the machine issues? Do you check your
bank statement? Even if you don’t, do
you put your faith in other people who
double-check their balances, so that
the bank won’t get away with wide­
spread cheating?

Is the integrity of banking equip­
ment more important or less impor­
tant than that of voting machines?
Won’t every voting process have some
room for error and fraud anyway? Is
the added cost for equipment, paper,

and staff time rea­
sonable to combat
a potentially slight
risk of malfunction
and fraud? Computer
scientists cannot
answer these ques­
tions—an informed
society must make
these tradeoffs. But,
like all professionals,
they have an obli­
gation to speak out
and give accurate
testimony about the
capabilities and limi­
tations of computing
equipment.

© Media Bakery.

Touch Screen Voting Machine
© Lisa F. Young/iStockphoto.

©
 P

et
er

 N
gu

ye
n/

iS
to

ck
ph

ot
o.

©
 L

is
a

F.
 Y

ou
ng

/iS
to

ck
ph

ot
o.

3.5  Problem Solving: Tracing Objects   103

3.5  Problem Solving: Tracing Objects
Researchers have studied why some students have an easier time learning how to pro-
gram than others. One important skill of successful programmers is the ability to
simulate the actions of a program with pencil and paper. In this section, you will see
how to develop this skill by tracing method calls on objects.

Use an index card or a sticky note for each object. On the front, write the methods
that the object can execute. On the back, make a table for the values of the instance
variables.

Here is a card for a CashRegister object:

CashRegister reg1
recordPurchase
receivePayment
giveChange

reg1.purchase reg1.payment

front back

In a small way, this gives you a feel for encapsulation. An object is manipulated
through its public interface (on the front of the card), and the instance variables are
hidden on the back.

When an object is constructed, fill in the initial values of the instance variables:

reg1.purchase reg1.payment

0 0

Whenever a mutator method is executed, cross out the old values and write the new
ones below. Here is what happens after a call to the recordPurchase method:

reg1.purchase reg1.payment

0 0
19.95

Write the methods
on the front of a card
and the instance
variables on the back.

Update the values
of the instance
variables when a
mutator method
is called.

104  Chapter 3  Implementing Classes

If you have more than one object in your program, you will have multiple cards, one
for each object:

0 0
29.50 50.00
9.25

reg1.purchase reg1.payment

0 0
19.95 19.95

reg2.purchase reg2.payment

These diagrams are also useful when you design a class. Suppose you are asked to
enhance the CashRegister class to compute the sales tax. Add methods recordTaxable-
Purchase and getSalesTax to the front of the card. Now turn the card over, look over the
instance variables, and ask yourself whether the object has sufficient information to
compute the answer. Remember that each object is an autonomous unit. Any value
that can be used in a computation must be

•	 An instance variable.
•	 A method argument.
•	 A static variable (uncommon; see Section 8.4).

To compute the sales tax, we need to know the tax rate and the total of the taxable
items. (Food items are usually not subject to sales tax.) We don’t have that informa-
tion available. Let us introduce additional instance variables for the tax rate and the
taxable total. The tax rate can be set in the constructor (assuming it stays fixed for the
lifetime of the object). When adding an item, we need to be told whether the item is
taxable. If so, we add its price to the taxable total.

For example, consider the following statements.
CashRegister reg3 = new CashRegister(7.5); // 7.5 percent sales tax
reg3.recordPurchase(3.95); // Not taxable
reg3.recordTaxablePurchase(19.95); // Taxable

When you record the effect on a card, it looks like this:

reg3.taxRate

0 7.5

reg3.taxablePurchase

0 0
19.953.95

reg3.purchase reg3.payment

With this information, we can compute the tax. It is taxablePurchase x taxRate / 100. Tracing
the object helped us understand the need for additional instance variables.

17.	 Consider a Car class that simulates fuel consumption in a car. We will assume a
fixed efficiency (in miles per gallon) that is supplied in the constructor. There are
methods for adding gas, driving a given distance, and checking the amount of gas
left in the tank. Make a card for a Car object, choosing suitable instance variables
and showing their values after the object was constructed.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to
download an
enhanced
CashRegister class
that computes the
sales tax.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

3.6  Local Variables   105

18.	 Trace the following method calls:
Car myCar = new Car(25);
myCar.addGas(20);
myCar.drive(100);
myCar.drive(200);
myCar.addGas(5);

19.	 Suppose you are asked to simulate the odometer of
the car, by adding a method getMilesDriven. Add an
instance variable to the object’s card that is suitable
for computing this method’s result.

20.	 Trace the methods of Self Check 18, updating the
instance variable that you added in Self Check 19.

Practice It	 Now you can try these exercises at the end of the chapter: R3.19, R3.20, R3.21.

3.6  Local Variables
In this section, we discuss the behavior of local variables. A local variable is a variable
that is declared in the body of a method. For example, the giveChange method in How
To 3.1 declares a local variable change:

public double giveChange()
{
 double change = payment - purchase;
 purchase = 0;
 payment = 0;
 return change;
}

Parameter variables are similar to local variables, but they are declared in method
headers. For example, the following method declares a parameter variable amount:

public void receivePayment(double amount)

Local and parameter variables belong to methods. When a method runs, its local and
parameter variables come to life. When the method exits, they are removed immedi-
ately. For example, if you call register.giveChange(), then a variable change is created.
When the method exits, that variable is removed.

In contrast, instance variables belong to objects, not methods. When an object is
constructed, its instance variables are created. The instance variables stay alive until
no method uses the object any longer. (The Java virtual machine contains an agent
called a garbage collector that periodically reclaims objects when they are no longer
used.)

An important difference between instance variables and local variables is initial-
ization. You must initialize all local variables. If you don’t initialize a local variable,
the compiler complains when you try to use it. (Note that parameter variables are
initialized when the method is called.)

Instance variables are initialized with a default value before a constructor is
invoked. Instance variables that are numbers are initialized to 0. Object references are
set to a special value called null. If an object reference is null, then it refers to no object
at all. We will discuss the null value in greater detail in Section 5.2.5.

© plusphoto/iStockphoto.

Local variables are
declared in the body
of a method.

When a method exits,
its local variables are
removed.

Instance variables are
initialized to a
default value, but
you must initialize
local variables.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down­
load a demonstration
of local variables.

© Alex Slobodkin/iStockphoto.

©
 p

lu
sp

ho
to

/iS
to

ck
ph

ot
o.

106  Chapter 3  Implementing Classes

21.	 What do local variables and parameter variables have in common? In which
essential aspect do they differ?

22.	 Why was it necessary to introduce the local variable change in the giveChange
method? That is, why didn’t the method simply end with the statement
return payment - purchase;

23.	 Consider a CashRegister object reg1 whose payment instance variable has the
value 20 and whose purchase instance variable has the value 19.5. Trace the call
reg1.giveChange(). Include the local variable change. Draw an X in its column
when the variable ceases to exist.

Practice It	 Now you can try these exercises at the end of the chapter: R3.15, R3.16.

Duplicating Instance Variables in Local Variables

Beginning programmers commonly add types to assignment statements, thereby changing
them into local variable declarations. For example,

public double giveChange()
{
 double change = payment - purchase;
 double purchase = 0; // ERROR! This declares a local variable.
 double payment = 0; // ERROR! The instance variable is not updated.
 return change;
}

Another common error is to declare a parameter variable with the same name as an instance
variable. For example, consider this BankAccount constructor:

public BankAccount(double balance)
{
 balance = balance; // ERROR! Does not set the instance variable
}

This constructor simply sets the parameter variable to itself, leaving it unchanged. A simple
remedy is to come up with a different name for the parameter variable:

public BankAccount(double initialBalance)
{
 balance = initialBalance; // OK
}

Providing Unnecessary Instance Variables

A common beginner’s mistake is to use instance variables when local variables would be more
appropriate. For example, consider the change variable of the giveChange method. It is not
needed anywhere else––that’s why it is local to the method. But what if it had been declared as
an instance variable?

public class CashRegister
{
 private double purchase;
 private double payment;
 private double change; // Not appropriate

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Common Error 3.3

© John Bell/iStockphoto.

Common Error 3.4

© John Bell/iStockphoto.

3.7  The this Reference   107

 public double giveChange()
 {
 change = payment - purchase;
 purchase = 0;
 payment = 0;
 return change;
 }
 . . .
}

This class will work, but there is a hidden danger. Other methods can read and write to the
change instance variable, which can be a source of confusion.

Use instance variables for values that an object needs to remember between method calls.
Use local variables for values that don’t need to be retained when a method has completed.

Forgetting to Initialize Object References in a Constructor

Just as it is a common error to forget to initialize a local variable, it is easy to forget about
instance variables. Every constructor needs to ensure that all instance variables are set to
appropriate values.

If you do not initialize an instance variable, the Java compiler will initialize it for you.
Numbers are initialized with 0, but object references—such as string variables—are set to the
null reference.

Of course, 0 is often a convenient default for numbers. However, null is hardly ever a con-
venient default for objects. Consider this “lazy” constructor for a modified version of the
BankAccount class:

public class BankAccount
{
 private double balance;
 private String owner;
 . . .
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }
}

Then balance is initialized, but the owner variable is set to a null reference. This can be a prob-
lem—it is illegal to call methods on the null reference.

To avoid this problem, it is a good idea to initialize every instance variable:

public BankAccount(double initialBalance)
{
 balance = initialBalance;
 owner = "None";
}

3.7  The this Reference
When you call a method, you pass two kinds of inputs to the method:

•	 The object on which you invoke the method
•	 The method arguments

Common Error 3.5

© John Bell/iStockphoto.

108  Chapter 3  Implementing Classes

For example, when you call
momsSavings.deposit(500);

the deposit method needs to know the account object (momsSavings) as well as the
amount that is being deposited (500).

When you implement the method, you provide a parameter variable for each argu-
ment. But you don’t need to provide a parameter variable for the object on which
the method is being invoked. That object is called the implicit parameter. All other
parameter variables (such as the amount to be deposited in our example) are called
explicit parameters.

Look again at the code of the deposit method:
public void deposit(double amount)
{
 balance = balance + amount;
}

Here, amount is an explicit parameter. You don’t see the implicit parameter—that is
why it is called “implicit”. But consider what balance means exactly. After all, our
program may have multiple BankAccount objects, and each of them has its own balance.

Because we are depositing the money into momsSavings, balance must mean
momsSavings.balance. In general, when you refer to an instance variable inside a method,
it means the instance variable of the implicit parameter.

In any method, you can access the implicit parameter—the object on which the
method is called—with the reserved word this. For example, in the preceding method
invocation, this refers to the same object as momsSavings (see Figure 7).

The statement
balance = balance + amount;

actually means
this.balance = this.balance + amount;

When you refer to an instance variable in a method, the compiler automatically
applies it to the this reference. Some programmers actually prefer to manually insert
the this reference before every instance variable because they find it makes the code
clearer. Here is an example:

public BankAccount(double initialBalance)
{
 this.balance = initialBalance;
}

You may want to try it out and see if you like that style.

Use of an instance
variable name in a
method denotes
the instance
variable of the
implicit parameter.

The this reference
denotes the implicit
parameter.

Figure 7  The Implicit Parameter of a Method Call

momsSavings =

balance =

BankAccount

1000this =

amount = 500

3.7  The this Reference   109

The this reference can also be used to distinguish between instance variables and
local or parameter variables. Consider the constructor

public BankAccount(double balance)
{
 this.balance = balance;
}

The expression this.balance clearly refers to the balance instance variable. However,
the expression balance by itself seems ambiguous. It could denote either the param-
eter variable or the instance variable. The Java language specifies that in this situation
the local variable wins out. It “shadows” the instance variable. Therefore,

this.balance = balance;

means: “Set the instance variable balance to the parameter variable balance”.
There is another situation in which it is important to understand implicit param-

eters. Consider the following modification to the BankAccount class. We add a method
to apply the monthly account fee:

public class BankAccount
{
 . . .
 public void monthlyFee()
 {
 withdraw(10); // Withdraw $10 from this account
 }
}

That means to withdraw from the same bank account object that is carrying out the
monthlyFee operation. In other words, the implicit parameter of the withdraw method is
the (invisible) implicit parameter of the monthlyFee method.

If you find it confusing to have an invisible parameter, you can use the this refer-
ence to make the method easier to read:

public class BankAccount
{
 . . .
 public void monthlyFee()
 {
 this.withdraw(10); // Withdraw $10 from this account
 }
}

You have now seen how to use objects and implement classes, and you have learned
some important technical details about variables and method parameters. The
remainder of this chapter continues the optional graphics track. In the next chapter,
you will learn more about the most fundamental data types of the Java language.

24.	 How many implicit and explicit parameters does the withdraw method of the
BankAccount class have, and what are their names and types?

25.	 In the deposit method, what is the meaning of this.amount? Or, if the expression
has no meaning, why not?

26.	 How many implicit and explicit parameters does the main method of the Bank-
AccountTester class have, and what are they called?

Practice It	 Now you can try these exercises at the end of the chapter: R3.11, R3.13.

A local variable
shadows an instance
variable with the
same name. You
can access the
instance variable
name through the
this reference.

A method call
without an implicit
parameter is applied
to the same object.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down­
load a a program that
demonstrates the
this reference.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

110  Chapter 3  Implementing Classes 	 Graphics Track

Calling One Constructor from Another

Consider the BankAccount class. It has two constructors: a no-argument constructor to initialize
the balance with zero, and another constructor to supply an initial balance. Rather than explic-
itly setting the balance to zero, one constructor can call another constructor of the same class
instead. There is a shorthand notation to achieve this result:

public class BankAccount
{
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }

 public BankAccount()
 {
 this(0);
 }
 . . .
}

The command this(0); means “Call another constructor of this class and supply the value 0”.
Such a call to another constructor can occur only as the first line in a constructor.

This syntax is a minor convenience. We will not use it in this book. Actually, the use of
the reserved word this is a little confusing. Normally, this denotes a reference to the implicit
parameter, but if this is followed by parentheses, it denotes a call to another constructor of the
same class.

3.8  Shape Classes
In this section, we continue the optional graphics track by discussing how to orga-
nize complex drawings in a more object-oriented fashion.

When you produce a drawing that has multiple shapes, or parts made of multiple
shapes, such as the car in Figure 8, it is a good idea to make a separate class for each
part. The class should have a draw method that draws the shape, and a constructor to
set the position of the shape. For example, here is the outline of the Car class:

public class Car
{
 public Car(int x, int y)
 {
 Remember position.
 . . .
 }

 public void draw(Graphics2D g2)
 {
 Drawing instructions.
 . . .
 }
}

You will find the complete class declaration at the end of this section. The draw method
contains a rather long sequence of instructions for drawing the body, roof, and tires.

Special Topic 3.1

© Eric Isselé/iStockphoto.

It is a good idea to
make a class for any
part of a drawing
that can occur
more than once.

Graphics Track 3.8  Shape Classes   111

Figure 8 
The Car Component
Draws Two Car Shapes

The coordinates of the car parts seem a bit arbitrary. To come up with suitable values,
draw the image on graph paper and read off the coordinates (Figure 9).

The program that produces Figure 8 is composed of three classes.

•	 The Car class is responsible for drawing a single car. Two objects of this class are
constructed, one for each car.

•	 The CarComponent class displays the drawing.
•	 The CarViewer class shows a frame that contains a CarComponent.

Let us look more closely at the CarComponent class. The paintComponent method draws
two cars. We place one car in the top-left corner of the window, and the other car in
the bottom-right corner. To compute the bottom-right position, we call the getWidth
and getHeight methods of the JComponent class. These methods return the dimensions
of the component. We subtract the dimensions of the car to determine the position of
car2:

Car car1 = new Car(0, 0);
int x = getWidth() - 60;
int y = getHeight() - 30;
Car car2 = new Car(x, y);

To figure out how to
draw a complex
shape, make a sketch
on graph paper.

Figure 9 
Using Graph Paper to
Find Shape Coordinates

0

10

20

30

40

0 10 20 30 40 50 60

112  Chapter 3  Implementing Classes 	 Graphics Track

Pay close attention to the call to getWidth inside the paintComponent method of Car-
Component. The method call has no implicit parameter, which means that the method is
applied to the same object that executes the paintComponent method. The component
simply obtains its own width.

Run the program and resize the window. Note that the second car always ends
up at the bottom-right corner of the window. Whenever the window is resized, the
paintComponent method is called and the car position is recomputed, taking the current
component dimensions into account.

section_8/CarComponent.java

1 import java.awt.Graphics;
2 import java.awt.Graphics2D;
3 import javax.swing.JComponent;
4
5 /**
6 This component draws two car shapes.
7 */
8 public class CarComponent extends JComponent
9 {

10 public void paintComponent(Graphics g)
11 {
12 Graphics2D g2 = (Graphics2D) g;
13
14 Car car1 = new Car(0, 0);
15
16 int x = getWidth() - 60;
17 int y = getHeight() - 30;
18
19 Car car2 = new Car(x, y);
20
21 car1.draw(g2);
22 car2.draw(g2);
23 }
24 }

section_8/Car.java

1 import java.awt.Graphics2D;
2 import java.awt.Rectangle;
3 import java.awt.geom.Ellipse2D;
4 import java.awt.geom.Line2D;
5 import java.awt.geom.Point2D;
6
7 /**
8 A car shape that can be positioned anywhere on the screen.
9 */

10 public class Car
11 {
12 private int xLeft;
13 private int yTop;
14
15 /**
16 Constructs a car with a given top left corner.
17 @param x the x-coordinate of the top-left corner
18 @param y the y-coordinate of the top-left corner
19 */
20 public Car(int x, int y)
21 {

Graphics Track 3.8  Shape Classes   113

22 xLeft = x;
23 yTop = y;
24 }
25
26 /**
27 Draws the car.
28 @param g2 the graphics context
29 */
30 public void draw(Graphics2D g2)
31 {
32 Rectangle body = new Rectangle(xLeft, yTop + 10, 60, 10);
33 Ellipse2D.Double frontTire
34 = new Ellipse2D.Double(xLeft + 10, yTop + 20, 10, 10);
35 Ellipse2D.Double rearTire
36 = new Ellipse2D.Double(xLeft + 40, yTop + 20, 10, 10);
37
38 // The bottom of the front windshield
39 Point2D.Double r1 = new Point2D.Double(xLeft + 10, yTop + 10);
40 // The front of the roof
41 Point2D.Double r2 = new Point2D.Double(xLeft + 20, yTop);
42 // The rear of the roof
43 Point2D.Double r3 = new Point2D.Double(xLeft + 40, yTop);
44 // The bottom of the rear windshield
45 Point2D.Double r4 = new Point2D.Double(xLeft + 50, yTop + 10);
46
47 Line2D.Double frontWindshield = new Line2D.Double(r1, r2);
48 Line2D.Double roofTop = new Line2D.Double(r2, r3);
49 Line2D.Double rearWindshield = new Line2D.Double(r3, r4);
50
51 g2.draw(body);
52 g2.draw(frontTire);
53 g2.draw(rearTire);
54 g2.draw(frontWindshield);
55 g2.draw(roofTop);
56 g2.draw(rearWindshield);
57 }
58 }

section_8/CarViewer.java

1 import javax.swing.JFrame;
2
3 public class CarViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new JFrame();
8
9 frame.setSize(300, 400);

10 frame.setTitle("Two cars");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12
13 CarComponent component = new CarComponent();
14 frame.add(component);
15
16 frame.setVisible(true);
17 }
18 }

114  Chapter 3  Implementing Classes 	 Graphics Track

27.	 Which class needs to be modified to have the two cars positioned next to each
other?

28.	 Which class needs to be modified to have the car tires painted in black, and what
modification do you need to make?

29.	 How do you make the cars twice as big?

Practice It	 Now you can try these exercises at the end of the chapter: E3.19, E3.24.

Step 1	 Determine the shapes that you need for the drawing.

You can use the following shapes:
•	 Squares and rectangles
•	 Circles and ellipses
•	 Lines
The outlines of these shapes can be drawn in any color, and you can fill the insides of these
shapes with any color. You can also use text to label parts of your drawing.

Some national flags consist of three equally wide sections of different colors, side by side.

Punchstock.You could draw such a flag using three rectangles. But if the middle rectangle is white, as it
is, for example, in the flag of Italy (green, white, red), it is easier and looks better to draw a line
on the top and bottom of the middle portion:

Two rectangles

Two lines

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© Steve Simzer/iStockphoto.

How To 3.2	 Drawing Graphical Shapes

Suppose you want to write a program that displays graphical shapes such as cars, aliens, charts,
or any other images that can be obtained from rectangles, lines, and ellipses. These instructions
give you a step-by-step procedure for decomposing a drawing into parts and implementing a
program that produces the drawing.

Problem Statement  Create a program that draws a national flag.

©
 P

un
ch

st
oc

k.

Graphics Track 3.8  Shape Classes   115

Step 2	 Find the coordinates for the shapes.

You now need to find the exact positions for the geometric shapes.
•	 For rectangles, you need the x- and y-position of the top-left corner, the width, and the

height.
•	 For ellipses, you need the top-left corner, width, and height of the bounding rectangle.
•	 For lines, you need the x- and y-positions of the start and end points.
•	 For text, you need the x- and y-position of the basepoint.
A commonly-used size for a window is 300 by 300 pixels. You may not want the flag crammed
all the way to the top, so perhaps the upper-left corner of the flag should be at point (100, 100).

Many flags, such as the flag of Italy, have a width : height ratio of 3 : 2. (You can often find
exact proportions for a particular flag by doing a bit of Internet research on one of several
Flags of the World sites.) For example, if you make the flag 90 pixels wide, then it should be 60
pixels tall. (Why not make it 100 pixels wide? Then the height would be 100 · 2 / 3 ≈ 67, which
seems more awkward.)

Now you can compute the coordinates of all the important points of the shape:

(100, 100) (130, 100) (160, 100) (190, 100)

(100, 160) (130, 160) (160, 160) (190, 160)

Step 3	 Write Java statements to draw the shapes.

In our example, there are two rectangles and two lines:

Rectangle leftRectangle = new Rectangle(100, 100, 30, 60);
Rectangle rightRectangle = new Rectangle(160, 100, 30, 60);
Line2D.Double topLine = new Line2D.Double(130, 100, 160, 100);
Line2D.Double bottomLine = new Line2D.Double(130, 160, 160, 160);

If you are more ambitious, then you can express the coordinates in terms of a few variables.
In the case of the flag, we have arbitrarily chosen the top-left corner and the width. All other
coordinates follow from those choices. If you decide to follow the ambitious approach, then
the rectangles and lines are determined as follows:

Rectangle leftRectangle = new Rectangle(
 xLeft, yTop,
 width / 3, width * 2 / 3);
Rectangle rightRectangle = new Rectangle(
 xLeft + 2 * width / 3, yTop,
 width / 3, width * 2 / 3);
Line2D.Double topLine = new Line2D.Double(
 xLeft + width / 3, yTop,
 xLeft + width * 2 / 3, yTop);
Line2D.Double bottomLine = new Line2D.Double(
 xLeft + width / 3, yTop + width * 2 / 3,
 xLeft + width * 2 / 3, yTop + width * 2 / 3);

116  Chapter 3  Implementing Classes

Now you need to fill the rectangles and draw the lines. For the flag of Italy, the left rectangle is
green and the right rectangle is red. Remember to switch colors before the filling and drawing
operations:

g2.setColor(Color.GREEN);
g2.fill(leftRectangle);
g2.setColor(Color.RED);
g2.fill(rightRectangle);
g2.setColor(Color.BLACK);
g2.draw(topLine);
g2.draw(bottomLine);

Step 4	 Combine the drawing statements with the component “plumbing”.

public class MyComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 Drawing instructions.
 . . .
 }
}

In our simple example, you could add all shapes and drawing instructions inside the
paintComponent method:

public class ItalianFlagComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 Rectangle leftRectangle = new Rectangle(100, 100, 30, 60);
 . . .
 g2.setColor(Color.GREEN);
 g2.fill(leftRectangle);
 . . .
 }
}

That approach is acceptable for simple drawings, but it is not very object-oriented. After all,
a flag is an object. It is better to make a separate class for the flag. Then you can draw different
flags at different positions. Specify the sizes in a constructor and supply a draw method:

public class ItalianFlag
{
 private int xLeft;
 private int yTop;
 private int width;

 public ItalianFlag(int x, int y, int aWidth)
 {
 xLeft = x;
 yTop = y;
 width = aWidth;
 }

 public void draw(Graphics2D g2)
 {
 Rectangle leftRectangle = new Rectangle(
 xLeft, yTop,
 width / 3, width * 2 / 3);

Graphics Track 	 Chapter Summary  117

 . . .
 g2.setColor(Color.GREEN);
 g2.fill(leftRectangle);
 . . .
 }
}

You still need a separate class for the component, but it is very simple:

public class ItalianFlagComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;
 ItalianFlag flag = new ItalianFlag(100, 100, 90);
 flag.draw(g2);
 }
}

Step 5	 Write the viewer class.

Provide a viewer class, with a main method in which you construct a frame, add your compo-
nent, and make your frame visible. The viewer class is completely routine; you only need to
change a single line to show a different component.

public class ItalianFlagViewer
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();

 frame.setSize(300, 400);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 ItalianFlagComponent component = new ItalianFlagComponent();
 frame.add(component);

 frame.setVisible(true);
 }
}

Understand instance variables and the methods that access them.

•	 An object’s instance variables store the data required for executing its methods.
•	 Each object of a class has its own set of instance variables.
•	 Private instance variables can only be accessed by

methods of the same class.
•	 Encapsulation is the process of hiding implementation

details and providing methods for data access.
•	 Encapsulation allows a programmer to use a class without having to know its

implementation.
•	 Information hiding makes it simpler for the implementor of a class to locate

errors and change implementations.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download the
complete flag
drawing program.

© Alex Slobodkin/iStockphoto.

C H A P T E R S U M M A R Y

© Mark Evans/iStockphoto.

© yenwen/iStockphoto.

118  Chapter 3  Implementing Classes

Write method and constructor headers that describe the public interface of a class.

•	 In order to implement a class, you first need to know which methods are required.
•	 Constructors set the initial data for objects.
•	 The constructor name is always the same as the class name.
•	 Use documentation comments to describe the classes and public methods of your

programs.
•	 Provide documentation comments for every class, every method, every parameter

variable, and every return value.

Implement a class.

•	 The private implementation of a class consists of instance variables, and the
bodies of constructors and methods.

Write tests that verify that a class works correctly.

•	 A unit test verifies that a class works correctly in isolation, outside a complete
program.

•	 To test a class, use an environment for interactive testing, or write a tester class to
execute test instructions.

Use the technique of object tracing for visualizing object behavior.

•	 Write the methods on the front of a card and the instance variables on the back.
•	 Update the values of the instance variables when a mutator method is called.

Compare initialization and lifetime of instance, local, and parameter variables.

•	 Local variables are declared in the body of a method.
•	 When a method exits, its local variables are removed.
•	 Instance variables are initialized to a default value, but you must initialize local

variables.

Recognize the use of the implicit parameter in method declarations.

•	 Use of an instance variable name in a method denotes the instance variable of the
implicit parameter.

•	 The this reference denotes the implicit parameter.
•	 A local variable shadows an instance variable with the same name. You can access

the instance variable name through the this reference.
•	 A method call without an implicit parameter is applied to the same object.

Implement classes that draw graphical shapes.

•	 It is a good idea to make a class for any part of a drawing that can occur more
than once.

•	 To figure out how to draw a complex shape, make a sketch on graph paper.

© iStockphoto.com/migin.

© Chris Fertnig/iStockphoto.

Punchstock.

Review Exercises  119

• R3.1	 What is the public interface of the Counter class in Section 3.1? How does it differ
from the implementation of the class?

• R3.2	 What is encapsulation? Why is it useful?

• R3.3	 Instance variables are a part of the hidden implementation of a class, but they aren’t
actually hidden from programmers who have the source code of the class. Explain to
what extent the private reserved word provides information hiding.

• R3.4	 Consider a class Grade that represents a letter grade, such as A+ or B. Give two
choices of instance variables that can be used for implementing the Grade class.

•• R3.5	 Consider a class Time that represents a point in time, such as 9 a.m. or 3:30 p.m.
Give two different sets of instance variables that can be used for implementing the
Time class.

• R3.6	 Suppose the implementor of the Time class of Exercise R3.5 changes from one imple
mentation strategy to another, keeping the public interface unchanged. What do the
programmers who use the Time class need to do?

•• R3.7	 You can read the value instance variable of the Counter class with the getValue accessor
method. Should there be a setValue mutator method to change it? Explain why or
why not.

•• R3.8	 	 a.	Show that the BankAccount(double initialBalance) constructor is not strictly
necessary. That is, if we removed that constructor from the public interface,
how could a programmer still obtain BankAccount objects with an arbitrary
balance?

b.	Conversely, could we keep only the BankAccount(double initialBalance) con-
structor and remove the BankAccount() constructor?

•• R3.9	 Why does the BankAccount class not have a reset method?

• R3.10	 What happens in our implementation of the BankAccount class when more money is
withdrawn from the account than the current balance?

•• R3.11	 What is the this reference? Why would you use it?

•• R3.12	 Which of the methods in the CashRegister class of Worked Example 3.1 are accessor
methods? Which are mutator methods?

•• R3.13	 What does the following method do? Give an example of how you can call the
method.

public class BankAccount
{
 public void mystery(BankAccount that, double amount)
 {
 this.balance = this.balance - amount;
 that.balance = that.balance + amount;
 }
 . . . // Other bank account methods
}

•• R3.14	 Suppose you want to implement a class TimeDepositAccount. A time deposit account
has a fixed interest rate that should be set in the constructor, together with the initial

R E V I E W E X E R C I S E S

120  Chapter 3  Implementing Classes

balance. Provide a method to get the current balance. Provide a method to add the
earned interest to the account. This method should have no arguments because the
interest rate is already known. It should have no return value because you already
provided a method for obtaining the current balance. It is not possible to deposit
additional funds into this account. Provide a withdraw method that removes the entire
balance. Partial withdrawals are not allowed.

• R3.15	 Consider the following implementation of a class Square:
public class Square
{
 private int sideLength;
 private int area; // Not a good idea

 public Square(int length)
 {
 sideLength = length;
 }

 public int getArea()
 {
 area = sideLength * sideLength;
 return area;
 }
}

Why is it not a good idea to introduce an instance variable for the area? Rewrite the
class so that area is a local variable.

•• R3.16	 Consider the following implementation of a class Square:
public class Square
{
 private int sideLength;
 private int area;

 public Square(int initialLength)
 {
 sideLength = initialLength;
 area = sideLength * sideLength;
 }

 public int getArea() { return area; }
 public void grow() { sideLength = 2 * sideLength; }
}

What error does this class have? How would you fix it?

•• Testing R3.17	 Provide a unit test class for the Counter class in Section 3.1.

•• Testing R3.18	 Read Exercise E3.12, but do not implement the Car class yet. Write a tester class that
tests a scenario in which gas is added to the car, the car is driven, more gas is added,
and the car is driven again. Print the actual and expected amount of gas in the tank.

• R3.19	 Using the object tracing technique described in Section 3.5, trace the program at the
end of Section 3.4.

•• R3.20	 Using the object tracing technique described in Section 3.5, trace the program in
How To 3.1.

•• R3.21	 Using the object tracing technique described in Section 3.5, trace the program in
Worked Example 3.1.

Practice Exercises  121

••• R3.22	 Design a modification of the BankAccount class in which the first five transactions per
month are free and a $1 fee is charged for every additional transaction. Provide a
method that deducts the fee at the end of a month. What additional instance variables
do you need? Using the object tracing technique described in Section 3.5, trace a
scenario that shows how the fees are computed over two months.

•• Graphics R3.23	 Suppose you want to extend the car viewer program in Section 3.8 to show a subur
ban scene, with several cars and houses. Which classes do you need?

••• Graphics R3.24	 Explain why the calls to the getWidth and getHeight methods in the CarComponent class
have no explicit parameter.

•• Graphics R3.25	 How would you modify the Car class in order to show cars of varying sizes?

• E3.1	 We want to add a button to the tally counter in Section 3.1 that allows an operator to
undo an accidental button click. Provide a method

public void undo()

that simulates such a button. As an added precaution, make sure that clicking the
undo button more often than the click button has no effect. (Hint: The call
Math.max(n, 0) returns n if n is greater than zero, zero otherwise.)

• E3.2	 Simulate a tally counter that can be used to admit a limited number of people. First,
the limit is set with a call

public void setLimit(int maximum)

If the click button is clicked more often than the limit, it has no effect. (Hint: The call
Math.min(n, limit) returns n if n is less than limit, and limit otherwise.)

•• E3.3	 Simulate a circuit for controlling a hallway light that has switches at both ends of
the hallway. Each switch can be up or down, and the light can be on or off. Toggling
either switch turns the lamp on or off. Provide methods

public int getFirstSwitchState() // 0 for down, 1 for up
public int getSecondSwitchState()
public int getLampState() // 0 for off, 1 for on
public void toggleFirstSwitch()
public void toggleSecondSwitch()

• Testing E3.4	 Write a CircuitTester class that tests all switch combinations in Exercise E3.3, print-
ing out actual and expected states for the switches and lamps.

••• E3.5	 Change the public interface of the circuit class of Exercise E3.3 so that it has the fol-
lowing methods:

public int getSwitchState(int switch)
public int getLampState()
public void toggleSwitch(int switch)

Provide an implementation using only language features that have been introduced.
The challenge is to find a data representation from which to recover the switch states.

• Testing E3.6	 Write a BankAccountTester class whose main method constructs a bank account, depos
its $1,000, withdraws $500, withdraws another $400, and then prints the remaining
balance. Also print the expected result.

P R A C T I C E E X E R C I S E S

122  Chapter 3  Implementing Classes

• E3.7	 Add a method
public void addInterest(double rate)

to the BankAccount class that adds interest at the given rate. For example, after the
statements

BankAccount momsSavings = new BankAccount(1000);
momsSavings.addInterest(10); // 10 percent interest

the balance in momsSavings is $1,100. Also supply a BankAccountTester class that prints
the actual and expected balance.

• E3.8	 Write a class SavingsAccount that is similar to the BankAccount class, except that it has an
added instance variable interest. Supply a constructor that sets both the initial bal-
ance and the interest rate. Supply a method addInterest (with no explicit parameter)
that adds interest to the account. Write a SavingsAccountTester class that constructs a
savings account with an initial balance of $1,000 and an interest rate of 10 percent.
Then apply the addInterest method and print the resulting balance. Also compute the
expected result by hand and print it.

••• E3.9	 Add a method printReceipt to the CashRegister class. The method should print the
prices of all purchased items and the total amount due. Hint: You will need to form
a string of all prices. Use the concat method of the String class to add additional items
to that string. To turn a price into a string, use the call String.valueOf(price).

• E3.10	 After closing time, the store manager would like to know how much business was
transacted during the day. Modify the CashRegister class to enable this functionality.
Supply methods getSalesTotal and getSalesCount to get the total amount of all sales
and the number of sales. Supply a method reset that resets any counters and totals so
that the next day’s sales start from zero.

•• E3.11	 Implement a class Employee. An employee has a name (a string) and a salary (a double).
Provide a constructor with two arguments

public Employee(String employeeName, double currentSalary)

and methods
public String getName()
public double getSalary()
public void raiseSalary(double byPercent)

These methods return the name and salary, and raise the employee’s salary by a
certain percentage. Sample usage:

Employee harry = new Employee("Hacker, Harry", 50000);
harry.raiseSalary(10); // Harry gets a 10 percent raise

Supply an EmployeeTester class that tests all methods.

•• E3.12	 Implement a class Car with the following properties. A car has a certain fuel effi
ciency (measured in miles/gallon or liters/km—pick one) and a certain amount of
fuel in the gas tank. The efficiency is specified in the constructor, and the initial fuel
level is 0. Supply a method drive that simulates driving the car for a certain distance,
reducing the amount of gasoline in the fuel tank. Also supply methods getGasInTank,
returning the current amount of gasoline in the fuel tank, and addGas, to add gasoline
to the fuel tank. Sample usage:

Car myHybrid = new Car(50); // 50 miles per gallon
myHybrid.addGas(20); // Tank 20 gallons

Practice Exercises  123

myHybrid.drive(100); // Drive 100 miles
double gasLeft = myHybrid.getGasInTank(); // Get gas remaining in tank

You may assume that the drive method is never called with a distance that consumes
more than the available gas. Supply a CarTester class that tests all methods.

• E3.13	 Implement a class Product. A product has a name and a price, for example new
Product("Toaster", 29.95). Supply methods getName, getPrice, and reducePrice. Supply
a program ProductPrinter that makes two products, prints each name and price,
reduces their prices by $5.00, and then prints the prices again.

•• E3.14	 Provide a class for authoring a simple letter. In the constructor, supply the names of
the sender and the recipient:

public Letter(String from, String to)

Supply a method
public void addLine(String line)

to add a line of text to the body of the letter.
Supply a method

public String getText()

that returns the entire text of the letter. The text has the form:
Dear recipient name:
blank line
first line of the body
second line of the body
. . .
last line of the body
blank line
Sincerely,
blank line
sender name

Also supply a class LetterPrinter that prints this letter.
Dear John:

I am sorry we must part.
I wish you all the best.

Sincerely,

Mary

Construct an object of the Letter class and call addLine twice.
Hints: (1) Use the concat method to form a longer string from two shorter strings.
(2) The special string "\n" represents a new line. For example, the statement

body = body.concat("Sincerely,").concat("\n");

adds a line containing the string "Sincerely," to the body.

•• E3.15	 Write a class Bug that models a bug moving along a horizontal line. The bug moves
either to the right or left. Initially, the bug moves to the right, but it can turn to
change its direction. In each move, its position changes by one unit in the current
direction. Provide a constructor

public Bug(int initialPosition)

124  Chapter 3  Implementing Classes

and methods
public void turn()
public void move()
public int getPosition()

Sample usage:
Bug bugsy = new Bug(10);
bugsy.move(); // Now the position is 11
bugsy.turn();
bugsy.move(); // Now the position is 10

Your BugTester should construct a bug, make it move and turn a few times, and print
the actual and expected position.

•• E3.16	 Implement a class Moth that models a moth flying along a straight line. The moth has
a position, which is the distance from a fixed origin. When the moth moves toward a
point of light, its new position is halfway between its old position and the position of
the light source. Supply a constructor

public Moth(double initialPosition)

and methods
public void moveToLight(double lightPosition)
public double getPosition()

Your MothTester should construct a moth, move it toward a couple of light sources,
and check that the moth’s position is as expected.

••• Graphics E3.17	 Write a program that fills the window with a large ellipse, with a black outline and
filled with your favorite color. The ellipse should touch the window boundaries,
even if the window is resized. Call the getWidth and getHeight methods of the
JComponent class in the paintComponent method.

•• Graphics E3.18	 Draw a shooting target—a set of concentric rings in alternating black
and white colors. Hint: Fill a black circle, then fill a smaller white circle
on top, and so on. Your program should be composed of classes Target,
TargetComponent, and TargetViewer.

•• Graphics E3.19	 Write a program that draws a picture of a house. It could be as
simple as the accompanying figure, or if you like, more elabo-
rate (3-D, skyscraper, marble columns in the entryway, what-
ever). Implement a class House and supply a method
draw(Graphics2D g2) that draws the house.

•• Graphics E3.20	 Extend Exercise E3.19 by supplying a House constructor for specifying the position
and size. Then populate your screen with a few houses of different sizes.

•• Graphics E3.21	 Change the car viewer program in Section 3.8 to make the cars appear in different
colors. Each Car object should store its own color. Supply modified Car and Car
Component classes.

•• Graphics E3.22	 Change the Car class so that the size of a car can be specified in the constructor.
Change the CarComponent class to make one of the cars appear twice the size of the
original example.

•• Graphics E3.23	 Write a program to plot the string “HELLO”, using only lines and circles. Do not
call drawString, and do not use System.out. Make classes LetterH, LetterE, LetterL, and
LetterO.

Programming Projects  125

•• Graphics E3.24	 Write a program that displays the Olympic rings. Color the
rings in the Olympic colors. Provide classes OlympicRing,
OlympicRingViewer, and OlympicRingComponent.

•• Graphics E3.25	 Make a bar chart to plot the following data set. Label each bar.
Make the bars horizontal for easier labeling. Provide a class BarChartViewer and a class
BarChartComponent.

Bridge Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

Mackinac 3,800

• P3.1	 Enhance the CashRegister class so that it counts the purchased items. Provide a
getItemCount method that returns the count.

••• P3.2	 Support computing sales tax in the CashRegister class. The tax rate should be supplied
when constructing a CashRegister object. Add recordTaxablePurchase and getTotalTax
methods. (Amounts added with recordPurchase are not taxable.) The giveChange
method should correctly reflect the sales tax that is charged on taxable items.

•• P3.3	 Implement a class Balloon. A balloon starts out with radius 0. Supply a method
public void inflate(double amount)

that increases the radius by the given amount. Supply a method
public double getVolume()

that returns the current volume of the balloon. Use Math.PI for the value of π. To
compute the cube of a value r, just use r * r * r.

•• P3.4	 A microwave control panel has four buttons: one for increasing the time by 30
seconds, one for switching between power levels 1 and 2, a reset button, and a start
button. Implement a class that simulates the microwave, with a method for each but-
ton. The method for the start button should print a message “Cooking for ... seconds
at level ...”.

•• P3.5	 A Person has a name (just a first name for simplicity) and friends. Store the names of
the friends in a string, separated by spaces. Provide a constructor that constructs a
person with a given name and no friends. Provide methods

public void befriend(Person p)
public void unfriend(Person p)
public String getFriendNames()

• P3.6	 Add a method

public int getFriendCount()

to the Person class of Exercise P3.5.

P R O G R A M M I N G P R O J E C T S

126  Chapter 3  Implementing Classes

••• P3.7	 Implement a class Student. For the purpose of this exercise, a student has a name
and a total quiz score. Supply an appropriate constructor and methods getName(),
addQuiz(int score), getTotalScore(), and getAverageScore(). To compute the average,
you also need to store the number of quizzes that the student took.
Supply a StudentTester class that tests all methods.

• P3.8	 Write a class Battery that models a rechargeable battery. A battery has a constructor
public Battery(double capacity)

where capacity is a value measured in milliampere hours. A typical AA battery has a
capacity of 2000 to 3000 mAh. The method

public void drain(double amount)

drains the capacity of the battery by the given amount. The method
public void charge()

charges the battery to its original capacity.
The method

public double getRemainingCapacity()

gets the remaining capacity of the battery.

•• Graphics P3.9	 Write a program that draws three stars like the one at right. Use
classes Star, StarComponent, and StarViewer.

•• P3.10	 Implement a class RoachPopulation that simulates the growth of a
roach population. The constructor takes the size of the initial roach
population. The breed method simulates a period in which the
roaches breed, which doubles their population. The spray(double
percent) method simulates spraying with insecticide, which reduces the popula-
tion by the given percentage. The getRoaches method returns the current number of
roaches. A program called RoachSimulation simulates a population that starts out with
10 roaches. Breed, spray to reduce the population by 10 percent, and print the roach
count. Repeat three more times.

•• P3.11	 Implement a VotingMachine class that can be used for a simple election. Have methods
to clear the machine state, to vote for a Democrat, to vote for a Republican, and to
get the tallies for both parties.

••• P3.12	 In this project, you will enhance the BankAccount class and see how abstraction and
encapsulation enable evolutionary changes to software.
Begin with a simple enhancement: charging a fee for every deposit and withdrawal.
Supply a mechanism for setting the fee and modify the deposit and withdraw methods
so that the fee is levied. Test your class and check that the fee is computed correctly.
Now make a more complex change. The bank will allow a fixed number of free
transactions (deposits or withdrawals) every month, and charge for transactions
exceeding the free allotment. The charge is not levied immediately but at the end of
the month.
Supply a new method deductMonthlyCharge to the BankAccount class that deducts the
monthly charge and resets the transaction count. (Hint: Use Math.max(actual transac-
tion count, free transaction count) in your computation.)
Produce a test program that verifies that the fees are calculated correctly over several
months.

Answers to Self-Check Questions  127

••• P3.13	 In this project, you will explore an object-oriented alternative to the “Hello, World”
program in Chapter 1.
Begin with a simple Greeter class that has a single method, sayHello. That method
should return a string, not print it. Create two objects of this class and invoke their
sayHello methods. Of course, both objects return the same answer.
Enhance the Greeter class so that each object produces a customized greeting. For
example, the object constructed as new Greeter("Dave") should say "Hello, Dave". (Use
the concat method to combine strings to form a longer string, or peek ahead at
Section 4.5 to see how you can use the + operator for the same purpose.)
Add a method sayGoodbye to the Greeter class.
Finally, add a method refuseHelp to the Greeter class. It should return a string such as
"I am sorry, Dave. I am afraid I can’t do that."
If you use BlueJ, place two Greeter objects on the workbench (one that greets the
world and one that greets Dave) and invoke methods on them. Otherwise, write a
tester program that constructs these objects, invokes methods, and prints the results.

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 public void unclick()
{
 value = value - 1;
}

2.	 You can only access them by invoking the
methods of the Clock class.

3.	 In one of the methods of the Counter class.
4.	 The programmers who designed and imple-

mented the Java library.
5.	 Other programmers who work on the per-

sonal finance application.
6.	 harrysChecking.withdraw(

 harrysChecking.getBalance());

7.	 The withdraw method has return type void.
It doesn’t return a value. Use the getBalance
method to obtain the balance after the
withdrawal.

8.	 Add an accountNumber parameter variable to
the constructors, and add a getAccountNumber
method. There is no need for a setAccountNumber
method—the account number never changes
after construction.

9.	 /**
 Constructs a new bank account with a given
 initial balance.
 @param accountNumber the account number for
 this account
 @param initialBalance the initial balance for
 this account
*/

10.	 The first sentence of the method description
should describe the method—it is displayed in
isolation in the summary table.

11.	 An instance variable needs to be added to the
class:
private int accountNumber;

12.	 Because the balance instance variable is
accessed from the main method of BankRobber.
The compiler will report an error because main
is not a method of the BankAccount class and has
no access to BankAccount instance variables.

13.	 public int getWidth()
{
 return width;
}

14.	 There is more than one correct answer. One
possible implementation is as follows:
public void translate(int dx, int dy)
{
 int newx = x + dx;
 x = newx;
 int newy = y + dy;
 y = newy;
}

15.	 One BankAccount object, no BankAccountTester
object. The purpose of the BankAccountTester
class is merely to hold the main method.

16.	 In those environments, you can issue inter-
active commands to construct BankAccount

128  Chapter 3  Implementing Classes

objects, invoke methods, and display their
return values.

17.	

front

	

gasLeft milesPerGallon

0 25

back
18.	 gasLeft milesPerGallon

0
20
16
8
13

25

19.	 gasLeft milesPerGallon

0 25

totalMiles

0

20.	

0
20
16
8
13

25 0

100
300

gasLeft milesPerGallon totalMiles

21.	 Variables of both categories belong to meth-
ods—they come alive when the method is
called, and they die when the method exits.
They differ in their initialization. Parameter
variables are initialized with the values sup-
plied as arguments in the call; local variables
must be explicitly initialized.

22.	 After computing the change due, payment
and purchase were set to zero. If the method
returned payment - purchase, it would always
return zero.

23.	
change

20

0
0.5

X

reg1.purchase

19.5

0

reg1.payment

24.	 One implicit parameter, called this, of type
BankAccount, and one explicit parameter, called
amount, of type double.

25.	 It is not a legal expression. this is of type
BankAccount and the BankAccount class has no
instance variable named amount.

26.	 No implicit parameter—the main method is
not invoked on any object—and one explicit
parameter, called args.

27.	 CarComponent
28.	 In the draw method of the Car class, call

g2.fill(frontTire);
g2.fill(rearTire);

29.	 Double all measurements in the draw method of
the Car class.

Car myCar

Car(mpg)
addGas(amount)
drive(distance)
getGasLeft

Making a Simple Menu   WE1

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 1	 Find out which methods you are asked to supply.

The problem description lists two tasks:

Display the menu.
Add an option to the menu.

Step 2	 Specify the public interface.

Here we turn the list in Step 1 into a set of methods, with specific types for the parameter vari-
ables and the return values. As recommended in How To 3.1, we start by writing out sample
code:

mainMenu.addOption("Open new account");
mainMenu.addOption("Log into existing account");
mainMenu.display();

Now we have a specific list of methods:

public void addOption(String option)
public void display()

To complete the public interface, we need to specify the constructors. We have two choices:
•	 Supply a constructor Menu(String firstOption) that makes a menu with one option.
•	 Supply a constructor Menu() that makes a menu with no options.
Either choice will work fine. If we decide in favor of the second choice, the user of the class
needs to call addOption to add the first option—after all, there is no sense in having a menu with
no options. At first glance, that seems like a burden for the programmer using the class. But
actually, it is usually conceptually simpler if an API has no special cases (such as having to sup-
ply the first option in the constructor). Therefore, we decide that “simplest is best” and specify
the constructor

public Menu()

Step 3	 Document the public interface.

Here is the documentation, with comments, that describes the class and its methods:

/**
 A menu that is displayed on a console.
*/
public class Menu
{
 /**
 Constructs a menu with no options.
 */
 public Menu()
 {
 }

© Tom Horyn/iStockphoto.

Worked Example 3.1	 Making a Simple Menu

Problem Statement  Your task is to design a class Menu.
An object of this class can display a menu such as

1) Open new account
2) Log into existing account
3) Help
4) Quit

The numbers should be supplied automatically when
options are added to the menu.

© Mark Evans/iStockphoto.

© Alex Slobodkin/iStockphoto.

©
 M

ar
k

E
va

ns
/iS

to
ck

ph
ot

o.

WE2  Chapter 3  Implementing Classes

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

 /**
 Adds an option to the end of this menu.
 @param option the option to add
 */
 public void addOption(String option)
 {
 }

 /**
 Displays the menu on the console.
 */
 public void display()
 {
 }
}

Step 4	 Determine instance variables.

What data does a Menu option need to keep in order to fulfill its responsibilities? Of course,
in order to display the menu, it needs to store the menu text. Now consider the addOption
method. That method adds a number and the option to the menu text. Where does the number
come from? The menu object needs to store it too, so that it can increment whenever addOption
is called.

Therefore, our instance variables are

public class Menu
{
 private String menuText;
 private int optionCount;
 . . .
}

Step 5	 Implement constructors and methods.

We now implement the constructors and methods in the class, one at a time, in the order that is
most convenient. The constructor seems pretty easy:

public Menu()
{
 menuText = "";
 optionCount = 0;
}

The display method is easy as well:

public void display()
{
 System.out.println(menuText);
}

The addOption method requires a bit more thought. Here is the pseudocode:

Increment the option count.
Add the following to the menu text:
	 The option count
	 A) symbol
	 The option to be added
	 A “newline” character that causes the next option to appear on a new line

Making a Simple Menu   WE3

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

How do you add something to a string? If you look at the API of the String class, you will find
a method concat. For example, the call

menuText.concat(option)

creates a string consisting of the strings menuText and option. You can then store that string back
into the menuText variable:

menuText = menuText.concat(option);

As you will learn in Chapter 4, you can achieve the same effect with the + operator:

menuText = menuText + option;

We use the + operator in our solution because it is so convenient. Our method then becomes

public void addOption(String option)
{
 optionCount = optionCount + 1;
 menuText = menuText + optionCount + ") " + option + "\n";
}

Step 6	 Test your class.

Here is a short program that demonstrates all methods in the public interface of the Menu class:

public class MenuDemo
{
 public static void main(String[] args)
 {
 Menu mainMenu = new Menu();
 mainMenu.addOption("Open new account");
 mainMenu.addOption("Log into existing account");
 mainMenu.addOption("Help");
 mainMenu.addOption("Quit");
 mainMenu.display();
 }
}

Program Run

1) Open new account
2) Log into existing account
3) Help
4) Quit

4C H A P T E R

129

FUNDAMENTAL
DATA TYPES

To understand integer and floating-point
numbers

To recognize the limitations of the numeric types

To become aware of causes for overflow and roundoff errors

To understand the proper use of constants

To write arithmetic expressions in Java

To use the String type to manipulate character strings

To write programs that read input and produce
formatted output

CHAPTER GOALS

CHAPTER CONTENTS

4.1  NUMBERS  130

SYN 	 Constant Declaration  134
ST 1 	 Big Numbers  136
PT 1 	 Do Not Use Magic Numbers  137

4.2  ARITHMETIC  137

SYN 	 Cast  141
CE 1 	 Unintended Integer Division  142
CE 2 	 Unbalanced Parentheses  142
PT 2 	 Spaces in Expressions  143
J8 1 	 Avoiding Negative Remainders  143
ST 2 	 Combining Assignment and

Arithmetic  143
ST 3 	 Instance Methods and Static Methods  143
C&S 	 The Pentium Floating-Point Bug  144

4.3  INPUT AND OUTPUT  145

SYN 	 Input Statement  145
HT 1 	 Carrying Out Computations  149
WE 1 	 Computing the Volume and Surface Area of

a Pyramid 
© Alex Slobodkin/iStockphoto.

4.4  PROBLEM SOLVING: FIRST DO IT
BY HAND  152

WE 2 	 Computing Travel Time 
© Alex Slobodkin/iStockphoto.

4.5  STRINGS  154

PT 3 	 Reading Exception Reports  160
ST 4 	 Using Dialog Boxes for Input and

Output  160
C&S 	 International Alphabets and Unicode  161

© samxmeg/iStockphoto.

© samxmeg/iStockphoto.

130

Numbers and character strings (such as the ones on this
display board) are important data types in any Java program.
In this chapter, you will learn how to work with numbers and
text, and how to write simple programs that perform useful
tasks with them. We also cover the important topic of input
and output, which enables you to implement interactive
programs.

4.1  Numbers
We start this chapter with information about numbers. The following sections tell
you how to choose the most appropriate number types for your numeric values, and
how to work with constants––numeric values that do not change.

4.1.1  Number Types

In Java, every value is either a reference to an object, or it belongs to one of the eight
primitive types shown in Table 1.

Six of the primitive types are number types; four of them for integers and two for
floating-point numbers.

Each of the number types has a different range. Appendix G explains why the
range limits are related to powers of two. The largest number that can be represented
in an int is denoted by Integer.MAX_VALUE. Its value is about 2.14 billion. Similarly, the
smallest integer is Integer.MIN_VALUE, about –2.14 billion.

Table 1 Primitive Types

Type Description Size

int The integer type, with range
–2,147,483,648 (Integer.MIN_VALUE) . . . 2,147,483,647

(Integer.MAX_VALUE, about 2.14 billion)

4 bytes

byte The type describing a single byte, with range –128 . . . 127 1 byte

short The short integer type, with range –32,768 . . . 32,767 2 bytes

long The long integer type, with range
–9,223,372,036,854,775,808 . . . 9,223,372,036,854,775,807

8 bytes

double The double-precision floating-point type, with a range of
about ±10308 and about 15 significant decimal digits

8 bytes

float The single-precision floating-point type, with a range of
about ±1038 and about 7 significant decimal digits

4 bytes

char The character type, representing code units in the Unicode
encoding scheme (see Computing & Society 4.2 on page 161)

2 bytes

boolean The type with the two truth values false and true (see Chapter 5) 1 bit

Java has eight
primitive types,
including four
integer types
and two floating-
point types.

© samxmeg/iStockphoto.

© samxmeg/iStockphoto.

4.1  Numbers   131

Table 2 Number Literals in Java

Number Type Comment

6 int An integer has no fractional part.

–6 int Integers can be negative.

0 int Zero is an integer.

0.5 double A number with a fractional part has type double.

1.0 double An integer with a fractional part .0 has type double.

1E6 double A number in exponential notation: 1 × 106 or 1000000.
Numbers in exponential notation always have type double.

2.96E-2 double Negative exponent: 2.96 × 10–2 = 2.96 / 100 = 0.0296

100000L long The L suffix indicates a long literal.

100,000 Error: Do not use a comma as a decimal separator.

100_000 int You can use underscores in number literals.

3 1/2 Error: Do not use fractions; use decimal notation: 3.5

When a value such as 6 or 0.335 occurs in a Java program, it is called a number lit-
eral. If a number literal has a decimal point, it is a floating-point number; otherwise,
it is an integer. Table 2 shows how to write integer and floating-point literals in Java.

Generally, you will use the int type for integer quantities. Occasionally, however,
calculations involving integers can overflow. This happens if the result of a computa-
tion exceeds the range for the number type. For example,

int n = 1000000;
System.out.println(n * n); // Prints –727379968, which is clearly wrong

The product n * n is 1012, which is larger than the largest integer (about 2 · 109). The
result is truncated to fit into an int, yielding a value that is completely wrong. Unfor-
tunately, there is no warning when an integer overflow occurs.

If you run into this problem, the simplest remedy is to use the long type. Special
Topic 4.1 on page 136 shows you how to use the BigInteger type in the unlikely event
that even the long type overflows.

Overflow is not usually a problem for double-precision floating-point numbers.
The double type has a range of about ±10308. Floating-point numbers have a differ-
ent problem––limited precision. The double type has about 15 significant digits, and
there are many numbers that cannot be accurately represented as
double values.

When a value cannot be represented exactly, it is rounded to the
nearest match. Consider this example:

double f = 4.35;
System.out.println(100 * f); // Prints 434.99999999999994

If a computation yields an integer that is larger than the
largest int value (about 2.14 billion), it overflows.

A numeric
computation
overflows if the
result falls outside
the range for the
number type.

© Douglas Allen/iStockphoto.

Rounding errors
occur when an
exact representation
of a floating-point
number is not
possible.

©
 D

ou
gl

as
 A

lle
n/

iS
to

ck
ph

ot
o.

132  Chapter 4  Fundamental Data Types

Floating-point numbers have limited precision.
Not every value can be represented precisely,
and roundoff errors can occur.

The problem arises because computers represent numbers in the binary number sys-
tem. In the binary number system, there is no exact representation of the fraction
1/10, just as there is no exact representation of the fraction 1/3 = 0.33333 in the deci-
mal number system. (See Appendix G for more information.)

For this reason, the double type is not appropriate for financial calculations. In
this book, we will continue to use double values for bank balances and other financial
quantities so that we keep our programs as simple as possible. However, professional
programs need to use the BigDecimal type for this purpose—see Special Topic 4.1.

In Java, it is legal to assign an integer value to a floating-point variable:
int dollars = 100;
double balance = dollars; // OK

But the opposite assignment is an error: You cannot assign a floating-point expres-
sion to an integer variable.

double balance = 13.75;
int dollars = balance; // Error

You will see in Section 4.2.5 how to convert a value of type double into an integer.
In this book, we do not use the float type. It has less than 7 significant digits, which

greatly increases the risk of roundoff errors. Some programmers use float to save
on memory if they need to store a huge set of numbers that do not require much
precision.

4.1.2  Constants

In many programs, you need to use numerical constants—values that do not change
and that have a special significance for a computation.

A typical example for the use of constants is a computation that involves coin
values, such as the following:

payment = dollars + quarters * 0.25 + dimes * 0.1
 + nickels * 0.05 + pennies * 0.01;

Most of the code is self-documenting. However, the four numeric quantities, 0.25,
0.1, 0.05, and 0.01 are included in the arithmetic expression without any explana-
tion. Of course, in this case, you know that the value of a nickel is five cents, which
explains the 0.05, and so on. However, the next person who needs to maintain this
code may live in another country and may not know that a nickel is worth five cents.

Thus, it is a good idea to use symbolic names for all values, even those that appear
obvious. Here is a clearer version of the computation of the total:

double quarterValue = 0.25;
double dimeValue = 0.1;
double nickelValue = 0.05;
double pennyValue = 0.01;

© caracterdesign/iStockphoto.

©
 c

ar
ac

te
rd

es
ig

n/
iS

to
ck

ph
ot

o.

4.1  Numbers   133

payment = dollars + quarters * quarterValue + dimes * dimeValue
 + nickels * nickelValue + pennies * pennyValue;

There is another improvement we can make. There is a difference between the nickels
and nickelValue variables. The nickels variable can truly vary over the life of the pro-
gram, as we calculate different payments. But nickelValue is always 0.05.

In Java, constants are identified with the reserved word final. A variable tagged as
final can never change after it has been set. If you try to change the value of a final
variable, the compiler will report an error and your program will not compile.

Many programmers use all-uppercase names for constants (final variables), such
as NICKEL_VALUE. That way, it is easy to distinguish between variables (with mostly
lowercase letters) and constants. We will follow this convention in this book. How-
ever, this rule is a matter of good style, not a requirement of the Java language. The
compiler will not complain if you give a final variable a name with lowercase letters.

Here is an improved version of the code that computes the value of a payment.
final double QUARTER_VALUE = 0.25;
final double DIME_VALUE = 0.1;
final double NICKEL_VALUE = 0.05;
final double PENNY_VALUE = 0.01;
payment = dollars + quarters * QUARTER_VALUE + dimes * DIME_VALUE
 + nickels * NICKEL_VALUE + pennies * PENNY_VALUE;

Frequently, constant values are needed in several methods. Then you should declare
them together with the instance variables of a class and tag them as static and final.
As before, final indicates that the value is a constant. The static reserved word means
that the constant belongs to the class—this is explained in greater detail in Chapter 8.)

public class CashRegister
{
 // Constants
 public static final double QUARTER_VALUE = 0.25;
 public static final double DIME_VALUE = 0.1;
 public static final double NICKEL_VALUE = 0.05;
 public static final double PENNY_VALUE = 0.01;

 // Instance variables
 private double purchase;
 private double payment;

 // Methods
 . . .
}

We declared the constants as public. There is no danger in doing this because con-
stants cannot be modified. Methods of other classes can access a public constant by
first specifying the name of the class in which it is declared, then a period, then the
name of the constant, such as CashRegister.NICKEL_VALUE.

The Math class from the standard library declares a couple of useful constants:
public class Math
{
 . . .
 public static final double E = 2.7182818284590452354;
 public static final double PI = 3.14159265358979323846;
}

You can refer to these constants as Math.PI and Math.E in any method. For example,
double circumference = Math.PI * diameter;

A final variable is
a constant. Once its
value has been set, it
cannot be changed.

Use named constants
to make your
programs easier to
read and maintain.

134  Chapter 4  Fundamental Data Types

Syntax 4.1	 Constant Declaration

Syntax

final double NICKEL_VALUE = 0.05;

public static final double LITERS_PER_GALLON = 3.785;

The final
reserved word
indicates that this
value cannot
be modi�ed.

Declared in a class

Declared in a method: final typeName variableName = expression;

Declared in a class: accessSpecifier static final typeName variableName = expression;

Use uppercase letters for constants.

Declared in a method

The sample program below puts constants to work. The program shows a refinement
of the CashRegister class of How To 3.1. The public interface of that class has been
modified in order to solve a common business problem.

Busy cashiers sometimes make mistakes totaling up coin values. Our CashRegister
class features a method whose inputs are the coin counts. For example, the call

register.receivePayment(1, 2, 1, 1, 4);

processes a payment consisting of one dollar, two quarters, one dime, one nickel, and
four pennies. The receivePayment method figures out the total value of the payment,
$1.69. As you can see from the code listing, the method uses named constants for the
coin values.

section_1/CashRegister.java

1 /**
2 A cash register totals up sales and computes change due.
3 */
4 public class CashRegister
5 {
6 public static final double QUARTER_VALUE = 0.25;
7 public static final double DIME_VALUE = 0.1;
8 public static final double NICKEL_VALUE = 0.05;
9 public static final double PENNY_VALUE = 0.01;

10
11 private double purchase;
12 private double payment;
13
14 /**
15 Constructs a cash register with no money in it.
16 */
17 public CashRegister()
18 {
19 purchase = 0;
20 payment = 0;

4.1  Numbers   135

21 }
22
23 /**
24 Records the purchase price of an item.
25 @param amount the price of the purchased item
26 */
27 public void recordPurchase(double amount)
28 {
29 purchase = purchase + amount;
30 }
31
32 /**
33 Processes the payment received from the customer.
34 @param dollars the number of dollars in the payment
35 @param quarters the number of quarters in the payment
36 @param dimes the number of dimes in the payment
37 @param nickels the number of nickels in the payment
38 @param pennies the number of pennies in the payment
39 */
40 public void receivePayment(int dollars, int quarters,
41 int dimes, int nickels, int pennies)
42 {
43 payment = dollars + quarters * QUARTER_VALUE + dimes * DIME_VALUE
44 + nickels * NICKEL_VALUE + pennies * PENNY_VALUE;
45 }
46
47 /**
48 Computes the change due and resets the machine for the next customer.
49 @return the change due to the customer
50 */
51 public double giveChange()
52 {
53 double change = payment - purchase;
54 purchase = 0;
55 payment = 0;
56 return change;
57 }
58 }

section_1/CashRegisterTester.java

1 /**
2 This class tests the CashRegister class.
3 */
4 public class CashRegisterTester
5 {
6 public static void main(String[] args)
7 {
8 CashRegister register = new CashRegister();
9

10 register.recordPurchase(0.75);
11 register.recordPurchase(1.50);
12 register.receivePayment(2, 0, 5, 0, 0);
13 System.out.print("Change: ");
14 System.out.println(register.giveChange());
15 System.out.println("Expected: 0.25");
16
17 register.recordPurchase(2.25);
18 register.recordPurchase(19.25);
19 register.receivePayment(23, 2, 0, 0, 0);

136  Chapter 4  Fundamental Data Types

20 System.out.print("Change: ");
21 System.out.println(register.giveChange());
22 System.out.println("Expected: 2.0");
23 }
24 }

Program Run

Change: 0.25
Expected: 0.25
Change: 2.0
Expected: 2.0

1.	 Which are the most commonly used number types in Java?
2.	 Suppose you want to write a program that works with population data from

various countries. Which Java data type should you use?
3.	 Which of the following initializations are incorrect, and why?

a.	 int dollars = 100.0;
b.	double balance = 100;

4.	 What is the difference between the following two statements?
final double CM_PER_INCH = 2.54;

and
public static final double CM_PER_INCH = 2.54;

5.	 What is wrong with the following statement sequence?
double diameter = . . .;
double circumference = 3.14 * diameter;

Practice It	 Now you can try these exercises at the end of the chapter: R4.1, R4.27, E4.21.

Big Numbers

If you want to compute with really large numbers, you can use big number objects. Big num-
ber objects are objects of the BigInteger and BigDecimal classes in the java.math package. Unlike
the number types such as int or double, big number objects have essentially no limits on their
size and precision. However, computations with big number objects are much slower than
those that involve number types. Perhaps more importantly, you can’t use the familiar arith-
metic operators such as (+ - *) with them. Instead, you have to use methods called add, sub-
tract, and multiply. Here is an example of how to create a BigInteger object and how to call the
multiply method:

BigInteger n = new BigInteger("1000000");
BigInteger r = n.multiply(n);
System.out.println(r); // Prints 1000000000000

The BigDecimal type carries out floating-point computations without roundoff errors. For
example,

BigDecimal d = new BigDecimal("4.35");
BigDecimal e = new BigDecimal("100");
BigDecimal f = d.multiply(e);
System.out.println(f); // Prints 435.00

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Special Topic 4.1

© Eric Isselé/iStockphoto.

4.2  Arithmetic   137

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example, consider the following scary example that actually occurs in the Java library source:

h = 31 * h + ch;

Why 31? The number of days in January? One less than the number of bits in an integer?
Actually, this code computes a “hash code” from a string—a number that is derived from
the characters in such a way that different strings are likely to
yield different hash codes. The value 31 turns out to scramble
the character values nicely.

A better solution is to use a named constant:

final int HASH_MULTIPLIER = 31;
h = HASH_MULTIPLIER * h + ch;

You should never use magic numbers in your code. Any number
that is not completely self-explanatory should be declared as a
named constant. Even the most reasonable cosmic constant is
going to change one day. You think there are 365 days in a year?
Your customers on Mars are going to be pretty unhappy about
your silly prejudice. Make a constant

final int DAYS_PER_YEAR = 365;

4.2  Arithmetic
In this section, you will learn how to carry out arithmetic calculations in Java.

4.2.1  Arithmetic Operators

Java supports the same four basic arithmetic operations as a calculator—addition,
subtraction, multiplication, and division—but it uses different symbols for the multi-
plication and division operators.

You must write a * b to denote multiplication. Unlike in mathematics, you can-
not write a b, a · b, or a × b. Similarly, division is always indicated with the / operator,

never a ÷ or a fraction bar. For example,
a b+

2
 becomes (a + b) / 2.

The combination of variables, literals, operators, and/or method calls is called an
expression. For example, (a + b) / 2 is an expression.

Parentheses are used just as in algebra: to indicate in which order the parts of the
expression should be computed. For example, in the expression (a + b) / 2, the sum
a + b is computed first, and then the sum is divided by 2. In contrast, in the expression

a + b / 2

only b is divided by 2, and then the sum of a and b / 2 is formed. As in regular alge-
braic notation, multiplication and division have a higher precedence than addition
and subtraction. For example, in the expression a + b / 2, the / is carried out first, even
though the + operation occurs further to the left (see Appendix B).

If you mix integer and floating-point values in an arithmetic expression, the result
is a floating-point value. For example, 7 + 4.0 is the floating-point value 11.0.

Programming Tip 4.1

© Eric Isselé/iStockphoto.

© FinnBrandt/iStockphoto.
We prefer programs that
are easy to understand
over those that appear
to work by magic.

© hocus-focus/iStockphoto.

Mixing integers and
floating-point values
in an arithmetic
expression yields a
floating-point value.

©
 F

in
nB

ra
nd

t/
iS

to
ck

ph
ot

o.

©
 h

oc
us

-f
oc

us
/iS

to
ck

ph
ot

o.

138  Chapter 4  Fundamental Data Types

4.2.2  Increment and Decrement

Changing a variable by adding or subtracting 1 is so common that there is a special
shorthand for it. The ++ operator increments a variable (see Figure 1):

counter++; // Adds 1 to the variable counter

Similarly, the -- operator decrements a variable:
counter--; // Subtracts 1 from counter

4.2.3  Integer Division and Remainder

Division works as you would expect, as long as at least
one of the numbers involved is a floating-point number.
That is,

7.0 / 4.0
7 / 4.0
7.0 / 4

all yield 1.75. However, if both numbers are integers,
then the result of the integer division is always an
integer, with the remainder discarded. That is,

7 / 4

evaluates to 1 because 7 divided by 4 is 1 with a remain-
der of 3 (which is discarded). This can be a source of
subtle programming errors—see Common Error 4.1.

If you are interested in the remainder only, use the % operator:
7 % 4

is 3, the remainder of the integer division of 7 by 4. The % symbol has no analog in alge-
bra. It was chosen because it looks similar to /, and the remainder operation is related
to division. The operator is called modulus. (Some people call it modulo or mod.) It
has no relationship with the percent operation that you find on some calculators.

Here is a typical use for the integer / and % operations. Suppose you have an amount
of pennies in a piggybank:

int pennies = 1729;

You want to determine the value in dollars and cents. You obtain the dollars through
an integer division by 100:

int dollars = pennies / 100; // Sets dollars to 17

The ++ operator adds
1 to a variable; the --
operator subtracts 1.

Figure 1  Incrementing a Variable

1
counter =

counter + 1

3
2

counter =

4

4

counter + 1

© Michael Flippo/iStockphoto.

Integer division and the %
operator yield the dollar and
cent values of a piggybank
full of pennies.

If both arguments
of / are integers,
the remainder is
discarded.

The % operator
computes the
remainder of an
integer division.

©
 M

ic
ha

el
 F

lip
po

/iS
to

ck
ph

ot
o.

4.2  Arithmetic   139

Table 3 Integer Division and Remainder

Expression
(where n = 1729)

Value Comment

n % 10 9 n % 10 is always the last digit of n.

n / 10 172 This is always n without the last digit.

n % 100 29 The last two digits of n.

n / 10.0 172.9 Because 10.0 is a floating-point number, the fractional part is not discarded.

–n % 10 -9 Because the first argument is negative, the remainder is also negative.

n % 2 1 n % 2 is 0 if n is even, 1 or –1 if n is odd.

The integer division discards the remainder. To obtain the remainder, use the %
operator:

int cents = pennies % 100; // Sets cents to 29

See Table 3 for additional examples.

4.2.4  Powers and Roots

In Java, there are no symbols for powers and roots. To compute them, you must call
methods. To take the square root of a number, you use the Math.sqrt method. For
example, x is written as Math.sqrt(x). To compute xn, you write Math.pow(x, n).

In algebra, you use fractions, exponents, and roots to arrange expressions in a
compact two-dimensional form. In Java, you have to write all expressions in a linear
arrangement. For example, the mathematical expression

b
r n

× +⎛
⎝⎜

⎞
⎠⎟

1
100

becomes
b * Math.pow(1 + r / 100, n)

Figure 2 shows how to analyze such an expression. Table 4 shows additional mathe-
matical methods.

The Java library
declares many
mathematical
functions, such as
Math.sqrt (square
root) and Math.pow
(raising to a power).

Figure 2 
Analyzing an Expression

b * Math.pow(1 + r / 100, n)

r
100

r
1 +

100

r n⎛
⎝⎜

⎞
⎠⎟

1 +
100

b
r n

× +⎛
⎝⎜

⎞
⎠⎟

1
100

140  Chapter 4  Fundamental Data Types

Table 4 Mathematical Methods

Method Returns Method Returns

Math.sqrt(x) Square root of x (≥ 0) Math.abs(x) Absolute value | x |

Math.pow(x, y) xy (x > 0, or x = 0 and y > 0, or
x < 0 and y is an integer)

Math.max(x, y) The larger of x and y

Math.sin(x) Sine of x (x in radians) Math.min(x, y) The smaller of x and y

Math.cos(x) Cosine of x Math.exp(x) ex

Math.tan(x) Tangent of x Math.log(x) Natural log (ln(x), x > 0)

Math.round(x) Closest integer to x (as a long) Math.log10(x) Decimal log (log10 (x), x > 0)

Math.ceil(x) Smallest integer ≥ x
(as a double)

Math.floor(x) Largest integer ≤ x
(as a double)

Math.toRadians(x) Convert x degrees to radians
(i.e., returns x · π / 180)

Math.toDegrees(x) Convert x radians to degrees
(i.e., returns x · 180 / π)

4.2.5  Converting Floating-Point Numbers to Integers

Occasionally, you have a value of type double that you need to convert to the type int.
It is an error to assign a floating-point value to an integer:

double balance = total + tax;
int dollars = balance; // Error: Cannot assign double to int

The compiler disallows this assignment because it is potentially dangerous:

•	 The fractional part is lost.
•	 The magnitude may be too large. (The largest integer is about 2 billion, but a

floating-point number can be much larger.)

You must use the cast operator (int) to convert a convert floating-point value to an
integer. Write the cast operator before the expression that you want to convert:

double balance = total + tax;
int dollars = (int) balance;

The cast (int) converts the floating-point value balance to an integer by discarding the
fractional part. For example, if balance is 13.75, then dollars is set to 13.

When applying the cast operator to an arithmetic expression, you need to place the
expression inside parentheses:

int dollars = (int) (total + tax);

Discarding the fractional part is not always appropriate. If you want to round a
floating-point number to the nearest whole number, use the Math.round method. This
method returns a long integer, because large floating-point numbers cannot be stored
in an int.

long rounded = Math.round(balance);

If balance is 13.75, then rounded is set to 14.

You use a cast
(typeName) to
convert a value to
a different type.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a program that
demonstrates casts,
rounding, and the %
operator.

© Alex Slobodkin/iStockphoto.

4.2  Arithmetic   141

Syntax 4.2	 Cast

Syntax

(int) (balance * 100)

This is the type of the expression after casting.

These parentheses are a
part of the cast operator.

Use parentheses here if
the cast is applied to an expression

with arithmetic operators.

(typeName) expression

If you know that the result can be stored in an int and does not require a long, you
can use a cast:

int rounded = (int) Math.round(balance);

Table 5 Arithmetic Expressions

Mathematical
Expression

Java
Expression

Comments

x y+
2

(x + y) / 2 The parentheses are required; x + y / 2 computes x y+
2
.

xy
2

x * y / 2 Parentheses are not required; operators with the same
precedence are evaluated left to right.

1
100

+
⎛
⎝⎜

⎞
⎠⎟

r
n Math.pow(1 + r / 100, n) Use Math.pow(x, n) to compute xn.

a b2 2+ Math.sqrt(a * a + b * b) a * a is simpler than Math.pow(a, 2).

i j k+ +
3

(i + j + k) / 3.0 If i, j, and k are integers, using a denominator of 3.0
forces floating-point division.

π Math.PI Math.PI is a constant declared in the Math class.

6.	 A bank account earns interest once per year. In Java, how do you compute the
interest earned in the first year? Assume variables percent and balance of type
double have already been declared.

7.	 In Java, how do you compute the side length of a square whose area is stored in
the variable area?

8.	 The volume of a sphere is given by the formula at right. If the
radius is given by a variable radius of type double, write a Java
expression for the volume.

9.	 What is the value of 1729 / 100 and 1729 % 100?
10.	 If n is a positive number, what is (n / 10) % 10?

Practice It	 Now you can try these exercises at the end of the chapter: R4.4, R4.8, E4.4, E4.24.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

V r= 4
3

3π

142  Chapter 4  Fundamental Data Types

Unintended Integer Division

It is unfortunate that Java uses the same symbol, namely /, for both integer and floating-
point division. These are really quite different operations. It is a common error to use integer
division by accident. Consider this segment that computes the average of three integers:

int score1 = 10;
int score2 = 4;
int score3 = 9;
double average = (score1 + score2 + score3) / 3; // Error
System.out.println("Average score: " + average); // Prints 7.0, not 7.666666666666667

What could be wrong with that? Of course, the average of score1, score2, and score3 is
score1 + score2 + score3

3
Here, however, the / does not mean division in the mathematical sense. It denotes integer divi-
sion because both 3 and the sum of score1 + score2 + score3 are integers. Because the scores
add up to 23, the average is computed to be 7, the result of the integer division of 23 by 3. That
integer 7 is then moved into the floating-point variable average. The remedy is to make the
numerator or denominator into a floating-point number:

double total = score1 + score2 + score3;
double average = total / 3;

or
double average = (score1 + score2 + score3) / 3.0;

Unbalanced Parentheses

Consider the expression

((a + b) * t / 2 * (1 - t)

What is wrong with it? Count the parentheses. There are three (
and two). The parentheses are unbalanced. This kind of typing
error is very common with complicated expressions. Now consider
this expression.

(a + b) * t) / (2 * (1 - t)

This expression has three (and three), but it still is not correct. In the middle,

(a + b) * t) / (2 * (1 - t)
 ↑

there is only one (but two), which is an error. In the middle of an expression, the count of (
must be greater than or equal to the count of), and at the end of the expression the two counts
must be the same.

Here is a simple trick to make the counting easier without using pencil and paper. It is diffi-
cult for the brain to keep two counts simultaneously. Keep only one count when scanning the
expression. Start with 1 at the first opening parenthesis, add 1 whenever you see an opening
parenthesis, and subtract one whenever you see a closing parenthesis. Say the numbers aloud
as you scan the expression. If the count ever drops below zero, or is not zero at the end, the
parentheses are unbalanced. For example, when scanning the previous expression, you would
mutter

(a + b) * t) / (2 * (1 - t)
1 0 -1

and you would find the error.

Common Error 4.1

© John Bell/iStockphoto.

Common Error 4.2

© John Bell/iStockphoto.

© Croko/iStockphoto.

©
 C

ro
ko

/iS
to

ck
ph

ot
o.

4.2  Arithmetic   143

Spaces in Expressions

It is easier to read

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);

than

x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);

Simply put spaces around all operators + - * / % =. However, don’t put a space after a unary
minus: a – used to negate a single quantity, such as -b. That way, it can be easily distinguished
from a binary minus, as in a - b.

It is customary not to put a space after a method name. That is, write Math.sqrt(x) and not
Math.sqrt (x).

Avoiding Negative Remainders

The % operator yields negative values when the first operand is negative. This can be an annoy-
ance. For example, suppose a robot keeps track of directions in degrees between 0 and 359.
Now the robot turns by some number of degrees. You can’t simply compute the new direction
as (direction + turn) % 360 because you might get a negative result (see Exercise R4.7). In Java
8, you can instead call

Math.floorMod(direction + turn, 360)

to compute the correct remainder. The result of Math.floorMod(m, n) is always positive when n
is positive.

Combining Assignment and Arithmetic

In Java, you can combine arithmetic and assignment. For example, the instruction

balance += amount;

is a shortcut for balance = balance + amount;
Similarly,

total *= 2;

is another way of writing total = total * 2;
Many programmers find this a convenient shortcut. If you like it, go ahead and use it in

your own code. For simplicity, we won’t use it in this book, though.

Instance Methods and Static Methods

In the preceding section, you encountered the Math class, which contains a collection of helpful
methods for carrying out mathematical computations. These methods do not operate on an
object. That is, you don’t call

double root = 2.sqrt(); // Error

In Java, numbers are not objects, so you can never invoke a method on a number. Instead,
you pass a number as an argument (explicit parameter) to a method, enclosing the number in
parentheses after the method name:

double root = Math.sqrt(2);

Programming Tip 4.2

© Eric Isselé/iStockphoto.

Java 8 Note 4.1

© subjug/iStockphoto.

Special Topic 4.2

© Eric Isselé/iStockphoto.

Special Topic 4.3

© Eric Isselé/iStockphoto.

144  Chapter 4  Fundamental Data Types

Such methods are called static methods. (The term “static” is a historical holdover from the C
and C++ programming languages. It has nothing to do with the usual meaning of the word.)

Static methods do not operate on objects, but they are still declared inside classes. When
calling the method, you specify the class to which the sqrt method belongs:

The name of the static methodThe name of the class

Math.sqrt(2)

In contrast, a method that is invoked on an object is called an instance method. As a rule of
thumb, you use static methods when you manipulate numbers. You will learn more about the
distinction between static and instance methods in Chapter 8.

Computing & Society 4.1  The Pentium Floating-Point Bug

In 1994, Intel Corporation released what
was then its most powerful processor,

the Pentium. Unlike previous generations of its processors,
it had a very fast floating-point unit. Intel’s goal was to com
pete aggressively with the makers of higher-end processors
for engineering workstations. The Pentium was a huge suc-
cess immediately.

In the summer of 1994, Dr. Thomas Nicely of Lynchburg
College in Virginia ran an extensive set of computations
to analyze the sums of reciprocals of certain sequences of
prime numbers. The results were not always what his the
ory predicted, even after he took into account the inevita
ble roundoff errors. Then Dr. Nicely noted that the same
program did produce the correct results when running on
the slower 486 processor that preceded the Pentium in
Intel’s lineup. This should not have happened. The optimal
roundoff behavior of floating-point calculations has been
standardized by the Institute for Electrical and Electronics
Engineers (IEEE) and Intel claimed to adhere to the IEEE stan-
dard in both the 486 and the Pentium processors. Upon fur-
ther checking, Dr. Nicely discovered that indeed there was
a very small set of numbers for which the product of two
numbers was computed differently on the two processors.
For example,

4195 835 4195 835 3145727 3145727, , , , , , , ,− () ×()
is mathematically equal to 0, and it did compute as 0 on
a 486 processor. On his Pentium processor the result was
256.

As it turned out, Intel had independently discovered
the bug in its testing and had started to produce chips that
fixed it. The bug was caused by an error in a table that was
used to speed up the floating-point multiplication algorithm
of the processor. Intel determined that the problem was
exceedingly rare. They claimed that under normal use, a
typical consumer would only notice the problem once every
27,000 years. Unfortunately for Intel, Dr. Nicely had not
been a normal user.

Now Intel had a real problem on its hands. It figured that
the cost of replacing all Pentium processors that it had sold
so far would cost a great deal of money. Intel already had
more orders for the chip than it could produce, and it would
be particularly galling to have to give out the scarce chips as
free replacements instead of selling them. Intel’s manage-
ment decided to punt on the issue and initially offered to
replace the processors only for those customers who could
prove that their work required absolute precision in math-
ematical calculations. Naturally, that did not go over well
with the hundreds of thousands of customers who had paid
retail prices of $700 and more for a Pentium chip and did not
want to live with the nagging feeling that perhaps, one day,
their income tax program would produce a faulty return.

Ultimately, Intel caved in to public demand and replaced
all defective chips, at a cost of about 475 million dollars.

© Courtesy of Larry Hoyle, Institute for Policy & Social Research, University of Kansas.

1.
40

1.
20

1.
00

0.
80

0.
60

0.
40

0.
20

0.
00

-0
.2

0

-0
.4

0

-0
.6

0

-0
.8

0

-1
.0

0

-1
.2

0

-1
.4

0

-1
.6

0

-1
.8

0

-2
.0

0

1.40

1.10

0.80

0.50

0.20

-0.10

-0.40
-0.70

-1.00
-1.30

1.333680000

1.333700000

1.333720000

1.333740000

1.333760000

1.333780000

1.333800000

1.333820000

1.333840000

x/
y

4195835+

3145727+

Pentium FDIV error

This graph shows a set of numbers for which the original
Pentium processor obtained the wrong quotient.

© Media Bakery.

©
 C

ou
rt

es
y

of
 L

ar
ry

 H
oy

le
, I

ns
ti

tu
te

 fo
r

Po
lic

y
&

 S
oc

ia
l R

es
ea

rc
h,

 U
ni

ve
rs

it
y

of
 K

an
sa

s.

4.3  Input and Output   145

4.3  Input and Output
In the following sections, you will see how to read user input and how to control the
appearance of the output that your programs produce.

4.3.1  Reading Input

You can make your programs more flexible if you ask the program user for inputs
rather than using fixed values. Consider, for example, a program that processes prices
and quantities of soda containers. Prices and quantities are likely to fluctuate. The
program user should provide them as inputs.

When a program asks for user input, it should first print a message that tells the
user which input is expected. Such a message is called a prompt.

System.out.print("Please enter the number of bottles: "); // Display prompt

Use the print method, not println, to display the prompt. You want the input to
appear after the colon, not on the following line. Also remember to leave a space after
the colon.

Because output is sent to System.out, you might think that you use System.in for
input. Unfortunately, it isn’t quite that simple. When Java was first designed, not
much attention was given to reading keyboard input. It was assumed that all pro-
grammers would produce graphical user interfaces with text fields and menus.
System.in was given a minimal set of features and must be combined with other classes
to be useful.

To read keyboard input, you use a class called Scanner. You obtain a Scanner object
by using the following statement:

Scanner in = new Scanner(System.in);

Once you have a scanner, you use its nextInt method to read an integer value:
System.out.print("Please enter the number of bottles: ");
int bottles = in.nextInt();

© Media Bakery.
A supermarket
scanner reads bar
codes. The Java
Scanner reads
numbers and text.

Use the Scanner class
to read keyboard
input in a
console window.

Syntax 4.3	 Input Statement

import java.util.Scanner;
.
.

Scanner in = new Scanner(System.in);
.
.

System.out.print("Please enter the number of bottles: ");
int bottles = in.nextInt();

Display a prompt in the console window.

The program waits for user input,
then places the input into the variable.

De�ne a variable to hold the input value.

Don’t use println here.

Create a Scanner object
to read keyboard input.

Include this line so you can
use the Scanner class.

©
 M

ed
ia

 B
ak

er
y.

146  Chapter 4  Fundamental Data Types

When the nextInt method is called, the program waits until the user types a number
and presses the Enter key. After the user supplies the input, the number is placed into
the bottles variable, and the program continues.

To read a floating-point number, use the nextDouble method instead:
System.out.print("Enter price: ");
double price = in.nextDouble();

The Scanner class belongs to the package java.util. When using the Scanner class,
import it by placing the following declaration at the top of your program file:

import java.util.Scanner;

4.3.2  Formatted Output

When you print the result of a computation, you often want to control its appear-
ance. For example, when you print an amount in dollars and cents, you usually want
it to be rounded to two significant digits. That is, you want the output to look like

Price per liter: 1.22

instead of
Price per liter: 1.215962441314554

The following command displays the price with two digits after the decimal point:
System.out.printf("%.2f", price);

You can also specify a field width:
System.out.printf("%10.2f", price);

The price is printed using ten characters: six spaces followed by the four characters 1.22.

1 . 2 2

The construct %10.2f is called a format specifier: it describes how a value should be for-
matted. The letter f at the end of the format specifier indicates that we are displaying a
floating-point number. Use d for an integer and s for a string; see Table 6 for examples.

A format string contains format specifiers and literal characters. Any characters
that are not format specifiers are printed verbatim. For example, the command

System.out.printf("Price per liter:%10.2f", price);

prints
Price per liter: 1.22

Use the printf
method to specify
how values should
be formatted.

You use the printf method to line
up your output in neat columns.

© Koele/iStockphoto.

©
 K

oe
le

/iS
to

ck
ph

ot
o.

4.3  Input and Output   147

Table 6 Format Specifier Examples

Format String Sample Output Comments

"%d" 24 Use d with an integer.

"%5d" 24 Spaces are added so that the field width is 5.

"Quantity:%5d" Quantity: 24 Characters inside a format string but outside a
format specifier appear in the output.

"%f" 1.21997 Use f with a floating-point number.

"%.2f" 1.22 Prints two digits after the decimal point.

"%7.2f" 1.22 Spaces are added so that the field width is 7.

"%s" Hello Use s with a string.

"%d %.2f" 24 1.22 You can format multiple values at once.

You can print multiple values with a single call to the printf method. Here is a typical
example:

System.out.printf("Quantity: %d Total: %10.2f", quantity, total);

Q u a n t i t y : 2 4 :latoT 1 7 . 2 9

Two digits after
the decimal point

The printf method does not
start a new line here.width 10

No �eld width was speci�ed,
so no padding added

These spaces are spaces
in the format string.

The printf method, like the print method, does not start a new line after the output. If
you want the next output to be on a separate line, you can call System.out.println().
Alternatively, Section 4.5.4 shows you how to add a newline character to the format
string.

Our next example program will
prompt for the price of a six-pack of
soda and a two-liter bottle, and then
print out the price per liter for both.
The program puts to work what you
just learned about reading input and
formatting output.

What is the better deal? A six-pack of
12-ounce cans or a two-liter bottle?

cans: © blackred/iStockphoto. bottle: © travismanley/iStockphoto.

(c
an

s)
 ©

 b
la

ck
re

d/
iS

to
ck

ph
ot

o;

(b
ot

tl
e)

 ©
 tr

av
is

m
an

le
y/

iS
to

ck
ph

ot
o.

148  Chapter 4  Fundamental Data Types

section_3/Volume.java

1 import java.util.Scanner;
2
3 /**
4 This program prints the price per liter for a six-pack of cans and
5 a two-liter bottle.
6 */
7 public class Volume
8 {
9 public static void main(String[] args)

10 {
11 // Read price per pack
12
13 Scanner in = new Scanner(System.in);
14
15 System.out.print("Please enter the price for a six-pack: ");
16 double packPrice = in.nextDouble();
17
18 // Read price per bottle
19
20 System.out.print("Please enter the price for a two-liter bottle: ");
21 double bottlePrice = in.nextDouble();
22
23 final double CANS_PER_PACK = 6;
24 final double CAN_VOLUME = 0.355; // 12 oz. = 0.355 l
25 final double BOTTLE_VOLUME = 2;
26
27 // Compute and print price per liter
28
29 double packPricePerLiter = packPrice / (CANS_PER_PACK * CAN_VOLUME);
30 double bottlePricePerLiter = bottlePrice / BOTTLE_VOLUME;
31
32 System.out.printf("Pack price per liter: %8.2f", packPricePerLiter);
33 System.out.println();
34
35 System.out.printf("Bottle price per liter: %8.2f", bottlePricePerLiter);
36 System.out.println();
37 }
38 }

Program Run

Please enter the price for a six-pack: 2.95
Please enter the price for a two-liter bottle: 2.85
Pack price per liter: 1.38
Bottle price per liter: 1.43

11.	 Write statements to prompt for and read the user’s age using a Scanner variable
named in.

12.	 What is wrong with the following statement sequence?
System.out.print("Please enter the unit price: ");
double unitPrice = in.nextDouble();
int quantity = in.nextInt();

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

13.	 What is problematic about the following statement sequence?
System.out.print("Please enter the unit price: ");
double unitPrice = in.nextInt();

14.	 What is problematic about the following statement sequence?
System.out.print("Please enter the number of cans");
int cans = in.nextInt();

15.	 What is the output of the following statement sequence?
int volume = 10;
System.out.printf("The volume is %5d", volume);

16.	 Using the printf method, print the values of the integer variables bottles and cans
so that the output looks like this:
Bottles: 8
Cans: 24

The numbers to the right should line up. (You may assume that the numbers
have at most 8 digits.)

Practice It	 Now you can try these exercises at the end of the chapter: R4.13, E4.6, E4.7.

Step 1	 Understand the problem: What are the inputs? What are the desired outputs?

In this problem, there are two inputs:
•	 The denomination of the bill that the customer inserts
•	 The price of the purchased item
There are two desired outputs:
•	 The number of dollar coins that the machine returns
•	 The number of quarters that the machine returns

Step 2	 Work out examples by hand.

This is a very important step. If you can’t compute a couple of solutions by hand, it’s unlikely
that you’ll be able to write a program that automates the computation.

Let’s assume that a customer purchased an item that cost $2.25 and inserted a $5 bill. The
customer is due $2.75, or two dollar coins and three quarters, in change.

That is easy for you to see, but how can a Java program come to the same conclusion? The
key is to work in pennies, not dollars. The change due the customer is 275 pennies. Dividing
by 100 yields 2, the number of dollars. Dividing the remainder (75) by 25 yields 3, the number
of quarters.

© Steve Simzer/iStockphoto.

How To 4.1	 Carrying Out Computations

Many programming problems require arithmetic computations. This How To shows you
how to turn a problem statement into pseudocode and, ultimately, a Java program.

Problem Statement  Suppose you are asked to write a program that simulates a vending
machine. A customer selects an item for purchase and inserts a bill into the vending machine.
The vending machine dispenses the purchased item and gives change. We will assume that all
item prices are multiples of 25 cents, and the machine gives all change in dollar coins and quar-
ters. Your task is to compute how many coins of each type to return.

4.3  Input and Output   149

13.	 What is problematic about the following statement sequence?
System.out.print("Please enter the unit price: ");
double unitPrice = in.nextInt();

14.	 What is problematic about the following statement sequence?
System.out.print("Please enter the number of cans");
int cans = in.nextInt();

15.	 What is the output of the following statement sequence?
int volume = 10;
System.out.printf("The volume is %5d", volume);

16.	 Using the printf method, print the values of the integer variables bottles and cans
so that the output looks like this:
Bottles: 8
Cans: 24

The numbers to the right should line up. (You may assume that the numbers
have at most 8 digits.)

Practice It	 Now you can try these exercises at the end of the chapter: R4.13, E4.6, E4.7.

Step 1	 Understand the problem: What are the inputs? What are the desired outputs?

In this problem, there are two inputs:
•	 The denomination of the bill that the customer inserts
•	 The price of the purchased item
There are two desired outputs:
•	 The number of dollar coins that the machine returns
•	 The number of quarters that the machine returns

Step 2	 Work out examples by hand.

This is a very important step. If you can’t compute a couple of solutions by hand, it’s unlikely
that you’ll be able to write a program that automates the computation.

Let’s assume that a customer purchased an item that cost $2.25 and inserted a $5 bill. The
customer is due $2.75, or two dollar coins and three quarters, in change.

That is easy for you to see, but how can a Java program come to the same conclusion? The
key is to work in pennies, not dollars. The change due the customer is 275 pennies. Dividing
by 100 yields 2, the number of dollars. Dividing the remainder (75) by 25 yields 3, the number
of quarters.

© Steve Simzer/iStockphoto.

How To 4.1	 Carrying Out Computations

Many programming problems require arithmetic computations. This How To shows you
how to turn a problem statement into pseudocode and, ultimately, a Java program.

Problem Statement  Suppose you are asked to write a program that simulates a vending
machine. A customer selects an item for purchase and inserts a bill into the vending machine.
The vending machine dispenses the purchased item and gives change. We will assume that all
item prices are multiples of 25 cents, and the machine gives all change in dollar coins and quar-
ters. Your task is to compute how many coins of each type to return.

150  Chapter 4  Fundamental Data Types

Step 3	 Write pseudocode for computing the answers.

In the previous step, you worked out a specific instance of the problem. You now need to
come up with a method that works in general.

Given an arbitrary item price and payment, how can you compute the coins due? First,
compute the change due in pennies:

change due = 100 x bill value - item price in pennies
To get the dollars, divide by 100 and discard the remainder:

dollar coins = change due / 100 (without remainder)
The remaining change due can be computed in two ways. If you are familiar with the modulus
operator, you can simply compute

change due = change due % 100
Alternatively, subtract the penny value of the dollar coins from the change due:

change due = change due - 100 x dollar coins
To get the quarters due, divide by 25:

quarters = change due / 25

Step 4	 Declare the variables and constants that you need, and specify their types.

Here, we have five variables:
•	 billValue

•	 itemPrice

•	 changeDue

•	 dollarCoins

•	 quarters

Should we introduce constants to explain 100 and 25 as PENNIES_PER_DOLLAR and PENNIES_PER_
QUARTER? Doing so will make it easier to convert the program to international markets, so we
will take this step.

It is very important that changeDue and PENNIES_PER_DOLLAR are of type int because the com-
putation of dollarCoins uses integer division. Similarly, the other variables are integers.

Step 5	 Turn the pseudocode into Java statements.

If you did a thorough job with the pseudocode, this step should be easy. Of course, you have
to know how to express mathematical operations (such as powers or integer division) in Java.

changeDue = PENNIES_PER_DOLLAR * billValue - itemPrice;
dollarCoins = changeDue / PENNIES_PER_DOLLAR;
changeDue = changeDue % PENNIES_PER_DOLLAR;
quarters = changeDue / PENNIES_PER_QUARTER;

Step 6	 Provide input and output.

Before starting the computation, we prompt the user for the bill value and item price:

System.out.print("Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): ");
billValue = in.nextInt();
System.out.print("Enter item price in pennies: ");
itemPrice = in.nextInt();

When the computation is finished, we display the result. For extra credit, we use the printf
method to make sure that the output lines up neatly.

System.out.printf("Dollar coins: %6d", dollarCoins);
System.out.printf("Quarters: %6d", quarters);

4.3  Input and Output   151

Step 7	

A vending machine takes bills
and gives change in coins.

Photos.com/Jupiter Images.

Provide a class with a main method.

Your computation needs to be placed into a class. Find an appropriate name for the class that
describes the purpose of the computation. In our example, we will choose the name Vending-
Machine.

Inside the class, supply a main method.
In the main method, you need to declare constants and variables (Step 4), carry out compu-

tations (Step 5), and provide input and output (Step 6). Clearly, you will want to first get the
input, then do the computations, and finally show the output. Declare the constants at the
beginning of the method, and declare each variable just before it is needed.

Here is the complete program, how_to_1/VendingMachine.java:

import java.util.Scanner;

/**
 This program simulates a vending machine that gives change.
*/
public class VendingMachine
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);

 final int PENNIES_PER_DOLLAR = 100;
 final int PENNIES_PER_QUARTER = 25;

 System.out.print("Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): ");
 int billValue = in.nextInt();
 System.out.print("Enter item price in pennies: ");
 int itemPrice = in.nextInt();

 // Compute change due

 int changeDue = PENNIES_PER_DOLLAR * billValue - itemPrice;
 int dollarCoins = changeDue / PENNIES_PER_DOLLAR;
 changeDue = changeDue % PENNIES_PER_DOLLAR;
 int quarters = changeDue / PENNIES_PER_QUARTER;

 // Print change due

 System.out.printf("Dollar coins: %6d", dollarCoins);
 System.out.println();

P
ho

to
s.c

om
/J

up
it

er
 I

m
ag

es
.

152  Chapter 4  Fundamental Data Types

 System.out.printf("Quarters: %6d", quarters);
 System.out.println();
 }
}

Program Run

Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): 5
Enter item price in pennies: 225
Dollar coins: 2
Quarters: 3

4.4  Problem Solving: First Do It By Hand
A very important step for developing an algorithm is to first carry out the computa-
tions by hand. If you can’t compute a solution yourself, it’s unlikely that you’ll be
able to write a program that automates the computation.

To illustrate the use of hand calculations, consider the following problem.
A row of black and white tiles needs to be placed along a wall. For aesthetic rea-

sons, the architect has specified that the first and last tile shall be black.
Your task is to compute the number of tiles needed and the gap at each end, given

the space available and the width of each tile.

Total width

Gap

To make the problem more concrete, let’s assume the following dimensions:

•	 Total width: 100 inches
•	 Tile width: 5 inches

The obvious solution would be to fill the space with 20 tiles, but that would not
work—the last tile would be white.

© Tom Horyn/iStockphoto.

Worked Example 4.1	 Computing the Volume and
Surface Area of a Pyramid

Learn how to design a class for computing the volume and sur-
face area of a pyramid. Go to wiley.com/go/bjeo6examples and
download Worked Example 4.1.

© Holger Mette/iStockphoto.

© Alex Slobodkin/iStockphoto.

Pick concrete values
for a typical situation
to use in a hand
calculation.

©
 H

ol
ge

r
M

et
te

/iS
to

ck
ph

ot
o.

4.4  Problem Solving: First Do It By Hand   153

Instead, look at the problem this way: The first tile must always be black, and then
we add some number of white/black pairs:

The first tile takes up 5 inches, leaving 95 inches to be covered by pairs. Each pair is
10 inches wide. Therefore the number of pairs is 95 / 10 = 9.5. However, we need to
discard the fractional part because we can’t have fractions of tile pairs.

Therefore, we will use 9 tile pairs or 18 tiles, plus the initial black tile. Altogether,
we require 19 tiles.

The tiles span 19 × 5 = 95 inches, leaving a total gap of 100 – 19 × 5 = 5 inches.
The gap should be evenly distributed at both ends. At each end, the gap is

(100 – 19 × 5) / 2 = 2.5 inches.
This computation gives us enough information to devise an algorithm with arbi-

trary values for the total width and tile width.

number of pairs = integer part of (total width - tile width) / (2 x tile width)
number of tiles = 1 + 2 x number of pairs
gap at each end = (total width - number of tiles x tile width) / 2

As you can see, doing a hand calculation gives enough insight into the problem that it
becomes easy to develop an algorithm.

17.	 Translate the pseudocode for computing the number of tiles and the gap width
into Java.

18.	 Suppose the architect specifies a pattern with black, gray, and white tiles, like
this:

Again, the first and last tile should be black. How do you need to modify the
algorithm?

19.	 A robot needs to tile a floor with alternating black and white tiles. Develop
an algorithm that yields the color (0 for black, 1 for white), given the row and
column number. Start with specific values for the row and column, and then
generalize.

1 2 3 4

1

2

3

4

20.	 For a particular car, repair and maintenance costs in year 1 are estimated at $100;
in year 10, at $1,500. Assuming that the repair cost increases by the same amount
every year, develop pseudocode to compute the repair cost in year 3 and then
generalize to year n.

21.	 The shape of a bottle is approximated by two cylinders of radius r1 and r2 and
heights h1 and h2, joined by a cone section of height h3.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a program
that implements this
algorithm.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

r2

h2

h1

h3

r1

154  Chapter 4  Fundamental Data Types

Using the formulas for the volume of a cylinder, V r h= π 2 , and a cone section,

V
r r r r h

=
+ +()

π 1
2

1 2 2
2

3
,

develop pseudocode to compute the volume of the bottle. Using an actual bottle
with known volume as a sample, make a hand calculation of your pseudocode.

Practice It	 Now you can try these exercises at the end of the chapter: R4.18, R4.22, R4.23.

4.5  Strings
Many programs process text, not numbers. Text
consists of characters: letters, numbers, punc-
tuation, spaces, and so on. A string is a sequence
of characters. For example, the string "Harry" is a
sequence of five characters.

4.5.1  The String Type

You can declare variables that hold strings.
String name = "Harry";

We distinguish between string variables (such as the variable name declared above) and
string literals (character sequences enclosed in quotes, such as "Harry"). A string vari-
able is simply a variable that can hold a string, just as an integer variable can hold an
integer. A string literal denotes a particular string, just as a number literal (such as 2)
denotes a particular number.

The number of characters in a string is called the length of the string. For example,
the length of "Harry" is 5. As you saw in Section 2.3, you can compute the length of a
string with the length method.

int n = name.length();

A string of length 0 is called the empty string. It contains no characters and is written
as "".

© Tom Horyn/iStockphoto.

Worked Example 4.2	 Computing Travel Time

Learn how to develop a hand calculation to compute the time
that a robot requires to retrieve an item from rocky terrain. Go to
wiley.com/go/bjeo6examples and download Worked Example 4.2.

Courtesy NASA.

© Alex Slobodkin/iStockphoto.

© essxboy/iStockphoto.

Strings are sequences
of characters.

The length method
yields the number
of characters in
a string.

C
ou

rt
es

y
N

A
SA

.
©

 e
ss

xb
oy

/iS
to

ck
ph

ot
o.

4.5  Strings   155

4.5.2  Concatenation

Given two strings, such as "Harry" and "Morgan", you can concatenate them to one
long string. The result consists of all characters in the first string, followed by all
characters in the second string. In Java, you use the + operator to concatenate two
strings.

For example,
String fName = "Harry";
String lName = "Morgan";
String name = fName + lName;

results in the string
"HarryMorgan"

What if you’d like the first and last name separated by a space? No problem:
String name = fName + " " + lName;

This statement concatenates three strings: fName, the string literal " ", and lName. The
result is

"Harry Morgan"

When the expression to the left or the right of a + operator is a string, the other one
is automatically forced to become a string as well, and both strings are concatenated.

For example, consider this code:
String jobTitle = "Agent";
int employeeId = 7;
String bond = jobTitle + employeeId;

Because jobTitle is a string, employeeId is converted from the integer 7 to the string "7".
Then the two strings "Agent" and "7" are concatenated to form the string "Agent7".

This concatenation is very useful for reducing the number of System.out.print
instructions. For example, you can combine

System.out.print("The total is ");
System.out.println(total);

to the single call
System.out.println("The total is " + total);

The concatenation "The total is " + total computes a single string that consists of the
string "The total is ", followed by the string equivalent of the number total.

4.5.3  String Input

You can read a string from the console:
System.out.print("Please enter your name: ");
String name = in.next();

When a string is read with the next method, only one word is read. For example, sup-
pose the user types

Harry Morgan

as the response to the prompt. This input consists of two words. The call in.next()
yields the string "Harry". You can use another call to in.next() to read the second word.

Use the + operator to
concatenate strings;
that is, to put them
together to yield a
longer string.

Whenever one of
the arguments of the
+ operator is a string,
the other argument
is converted to
a string.

Use the next method
of the Scanner
class to read a
string containing a
single word.

156  Chapter 4  Fundamental Data Types

4.5.4  Escape Sequences

To include a quotation mark in a literal string, precede it with a backslash (\), like this:
"He said \"Hello\""

The backslash is not included in the string. It indicates that the quotation mark that
follows should be a part of the string and not mark the end of the string. The sequence
\" is called an escape sequence.

To include a backslash in a string, use the escape sequence \\, like this:
"C:\\Temp\\Secret.txt"

Another common escape sequence is \n, which denotes a newline character. Print-
ing a newline character causes the start of a new line on the display. For example, the
statement

System.out.print("*\n**\n***\n");

prints the characters
*
**

on three separate lines.
You often want to add a newline character to the end of the format string when

you use System.out.printf:
System.out.printf("Price: %10.2f\n", price);

4.5.5  Strings and Characters

Strings are sequences of Unicode characters (see Comput-
ing & Society 4.2). In Java, a character is a value of the
type char. Characters have numeric values. You can find
the values of the characters that are used in Western Euro-
pean languages in Appendix A. For example, if you look
up the value for the character 'H', you can see that it is actu-
ally encoded as the number 72.

Character literals are delimited by single quotes, and you should not confuse them
with strings.

•	 'H' is a character, a value of type char.
•	 "H" is a string containing a single character, a value of type String.

The charAt method returns a char value from a string. The first string position is
labeled 0, the second one 1, and so on.

0 1 2 3 4

H a r r y

The position number of the last character (4 for the string "Harry") is always one less
than the length of the string.

© slpix/iStockphoto.

A string is a sequence of
characters.

String positions are
counted starting
with 0.

©
 s

lp
ix

/
iS

to
ck

ph
ot

o.

4.5  Strings   157

For example, the statement

String name = "Harry";
char start = name.charAt(0);
char last = name.charAt(4);

sets start to the value 'H' and last to the value 'y'.

4.5.6  Substrings

Once you have a string, you can extract substrings by using the substring method.
The method call

str.substring(start, pastEnd)

returns a string that is made up of the characters in the string str, starting at posi-
tion start, and containing all characters up to, but not including, the position pastEnd.
Here is an example:

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is "Hello"

Here the substring operation makes a string that consists of the first five characters
taken from the string greeting.

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

Let’s figure out how to extract the substring "World". Count characters starting at 0,
not 1. You find that W has position number 7. The first character that you don’t want,
!, is the character at position 12. Therefore, the appropriate substring command is

String sub2 = greeting.substring(7, 12);

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

5

It is curious that you must specify the position of the first character that you do want
and then the first character that you don’t want. There is one advantage to this setup.
You can easily compute the length of the substring: It is pastEnd - start. For example,
the string "World" has length 12 – 7 = 5.

If you omit the end position when calling the substring method, then all characters
from the starting position to the end of the string are copied. For example,

String tail = greeting.substring(7); // Copies all characters from position 7 on

sets tail to the string "World!".
Following is a simple program that puts these concepts to work. The program asks

for your name and that of your significant other. It then prints out your initials.

Use the substring
method to extract a
part of a string.

158  Chapter 4  Fundamental Data Types

 The operation first.substring(0, 1) makes
a string consisting of one character, taken from
the start of first. The program does the same
for the second. Then it concatenates the result-
ing one-character strings with the string literal
"&" to get a string of length 3, the initials
string. (See Figure 3.)

section_5/Initials.java

1 import java.util.Scanner;
2
3 /**
4 This program prints a pair of initials.
5 */
6 public class Initials
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11
12 // Get the names of the couple
13
14 System.out.print("Enter your first name: ");
15 String first = in.next();
16 System.out.print("Enter your significant other's first name: ");
17 String second = in.next();
18
19 // Compute and display the inscription
20
21 String initials = first.substring(0, 1)
22 + "&" + second.substring(0, 1);
23 System.out.println(initials);
24 }
25 }

Program Run

Enter your first name: Rodolfo
Enter your significant other's first name: Sally
R&S

© Rich Legg/iStockphoto.Initials are formed from the first
letter of each name.Figure 3  Building the initials String

0 1 2
R & Sinitials =

0 1 2 3 4
S a l l ysecond =

0 1 2 3 4 5
R o d o l f

6
ofirst =

©
 R

ic
h

L
eg

g/
iS

to
ck

ph
ot

o.

4.5  Strings   159

Table 7 String Operations

Statement Result Comment

string str = "Ja";
str = str + "va";

str is set to "Java" When applied to strings, + denotes
concatenation.

System.out.println("Please"
 + " enter your name: ");

Prints
Please enter your name:

Use concatenation to break up strings
that don’t fit into one line.

team = 49 + "ers" team is set to "49ers" Because "ers" is a string, 49 is converted
to a string.

String first = in.next();
String last = in.next();
(User input: Harry Morgan)

first contains "Harry"
last contains "Morgan"

The next method places the next word
into the string variable.

String greeting = "H & S";
int n = greeting.length();

n is set to 5 Each space counts as one character.

String str = "Sally";
char ch = str.charAt(1);

ch is set to 'a' This is a char value, not a String. Note
that the initial position is 0.

String str = "Sally";
String str2 = str.substring(1, 4);

str2 is set to "all" Extracts the substring starting at
position 1 and ending before position 4.

String str = "Sally";
String str2 = str.substring(1);

str2 is set to "ally" If you omit the end position, all
characters from the position until the
end of the string are included.

String str = "Sally";
String str2 = str.substring(1, 2);

str2 is set to "a" Extracts a String of length 1; contrast
with str.charAt(1).

String last = str.substring(
 str.length() - 1);

last is set to the string
containing the last
character in str

The last character has position
str.length() - 1.

22.	 What is the length of the string "Java Program"?
23.	 Consider this string variable.

String str = "Java Program";

Give a call to the substring method that returns the substring "gram".
24.	 Use string concatenation to turn the string variable str from Self Check 23 into

"Java Programming".
25.	 What does the following statement sequence print?

String str = "Harry";
int n = str.length();
String mystery = str.substring(0, 1) + str.substring(n - 1, n);
System.out.println(mystery);

26.	 Give an input statement to read a name of the form “John Q. Public”.

Practice It	 Now you can try these exercises at the end of the chapter: R4.10, R4.14, E4.15, P4.7.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

160  Chapter 4  Fundamental Data Types

Reading Exception Reports

You will often have programs that terminate and display an error message, such as

Exception in thread "main" java.lang.StringIndexOutOfBoundsException:
 String index out of range: -4
 at java.lang.String.substring(String.java:1444)
 at Homework1.main(Homework1.java:16)

If this happens to you, don’t say “it didn’t work” or “my program died”. Instead, read the
error message. Admittedly, the format of the exception report is not very friendly. But it is
actually easy to decipher it.

When you have a close look at the error message, you will notice two pieces of useful
information:

1.	 The name of the exception, such as StringIndexOutOfBoundsException
2.	 The line number of the code that contained the statement that caused the exception,

such as Homework1.java:16

The name of the exception is always in the first line of the report, and it ends in Exception. If
you get a StringIndexOutOfBoundsException, then there was a problem with accessing an invalid
position in a string. That is useful information.

The line number of the offending code is a little harder to determine. The exception report
contains the entire stack trace—that is, the names of all methods that were pending when
the exception hit. The first line of the stack trace is the method that actually generated the
exception. The last line of the stack trace is a line in main. Often, the exception was thrown by
a method that is in the standard library. Look for the first line in your code that appears in the
exception report. For example, skip the line that refers to

java.lang.String.substring(String.java:1444)

The next line in our example mentions a line number in your code, Homework1.java. Once you
have the line number in your code, open up the file, go to that line, and look at it! Also look
at the name of the exception. In most cases, these two pieces of information will make it com-
pletely obvious what went wrong, and you can easily fix your error.

Using Dialog Boxes for Input and Output

Most program users find the console window rather old-fashioned. The easiest alternative is
to create a separate pop-up window for each input.

An Input Dialog Box

Call the static showInputDialog method of the JOptionPane class, and supply the string that
prompts the input from the user. For example,

String input = JOptionPane.showInputDialog("Enter price:");

That method returns a String object. Of course, often you need the input as a number. Use the
Integer.parseInt and Double.parseDouble methods to convert the string to a number:

double price = Double.parseDouble(input);

Programming Tip 4.3

© Eric Isselé/iStockphoto.

Special Topic 4.4

© Eric Isselé/iStockphoto.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a complete
program that uses
option panes for
input and output.

© Alex Slobodkin/iStockphoto.

Chapter Summary  161

You can also display output in a dialog box:

JOptionPane.showMessageDialog(null, "Price: " + price);

Computing & Society 4.2  International Alphabets and Unicode

Choose appropriate types for representing numeric data.

•	 Java has eight primitive types, including four integer types and two
floating-point types.

•	 A numeric computation overflows if the result falls outside the
range for the number type.

•	 Rounding errors occur when an exact conversion between
numbers is not possible.

•	 A final variable is a constant. Once its value has been set, it cannot
be changed.

•	 Use named constants to make your programs easier to read and maintain.

The English alpha-
bet is pretty simple:

upper- and lowercase a to z. Other
European languages have accent marks
and special characters. For example,
German has three so-called umlaut
characters, ä, ö, ü, and a double-s char
acter ß. These are not optional frills;
you couldn’t write a page of German
text without using these characters a
few times. German keyboards have
keys for these characters.

© pvachier/iStockphoto. The German Keyboard Layout

Many countries don’t use the Roman
script at all. Russian, Greek, Hebrew,

Arabic, and Thai letters, to name just a
few, have completely different shapes.
To complicate matters, Hebrew and
Arabic are typed from right to left. Each
of these alphabets has about as many
characters as the English alphabet.

© Joel Carillet/iStockphoto.
Hebrew, Arabic, and English

The Chinese languages as well as
Japanese and Korean use Chinese char-
acters. Each character represents an
idea or thing. Words are made up of
one or more of these ideographic char-
acters. Over 70,000 ideographs are
known.

Starting in 1987, a consortium of
hardware and software manufacturers
developed a uniform encoding scheme

called Unicode that is capable of
encoding text in essentially all written
languages of the world. An early ver-
sion of Unicode used 16 bits for each
character. The Java char type corre-
sponds to that encoding.

Today Unicode has grown to a
21-bit code, with definitions for over
100,000 characters (www.unicode.org).
There are even plans to add codes
for extinct languages, such as Egyp-
tian hieroglyphics. Unfortunately, that
means that a Java char value does not
always correspond to a Unicode char-
acter. Some characters in languages
such as Chinese or ancient Egyptian
occupy two char values.

© Saipg/iStockphoto.
The Chinese Script

© Media Bakery.

C H A P T E R S U M M A R Y

© Douglas Allen/iStockphoto.

©
 p

va
ch

ie
r/

iS
to

ck
ph

ot
o.

©
 S

ai
pg

/iS
to

ck
ph

ot
o.

©
 J

oe
l C

ar
ill

et
/iS

to
ck

ph
ot

o.

162  Chapter 4  Fundamental Data Types

Write arithmetic expressions in Java.

•	 Mixing integers and floating-point values in an arithmetic expression yields a
floating-point value.

•	 The ++ operator adds 1 to a variable; the -- operator subtracts 1.
•	 If both arguments of / are integers, the remainder is discarded.
•	 The % operator computes the remainder of an integer division.
•	 The Java library declares many mathematical functions, such as Math.sqrt (square

root) and Math.pow (raising to a power).
•	 You use a cast (typeName) to convert a value to a different type.

Write programs that read user input and print formatted output.

•	 Use the Scanner class to read keyboard input in a console window.
•	 Use the printf method to specify how values should be

formatted.

Carry out hand calculations when developing an algorithm.

•	 Pick concrete values for a typical situation to use in a hand calculation.

Write programs that process strings.

•	 Strings are sequences of characters.
•	 The length method yields the number of characters in

a string.
•	 Use the + operator to concatenate strings; that is, to put them together to yield a

longer string.
•	 Whenever one of the arguments of the + operator is a string, the other argument is

converted to a string.
•	 Use the next method of the Scanner class to read a string containing

a single word.
•	 String positions are counted starting with 0.
•	 Use the substring method to extract a part of a string.

© Michael Flippo/iStockphoto.

© Media Bakery. © Koele/iStockphoto.

© slpix/iStockphoto.

© essxboy/iStockphoto.

© Rich Legg/iStockphoto.

java.io.PrintStream
 printf
java.lang.Double
 parseDouble
java.lang.Integer
 MAX_VALUE
 MIN_VALUE
 parseInt
java.lang.Math
 PI
 abs
 ceil

 cos
 exp
 floor
 floorMod
 log
 log10
 max
 min
 pow
 round
 sin
 sqrt

 tan
 toDegrees
 toRadians
java.lang.String
 charAt
 length
 substring
java.lang.System
 in
java.math.BigDecimal
 add
 multiply

 subtract
java.math.BigInteger
 add
 multiply
 subtract
java.util.Scanner
 next
 nextDouble
 nextInt
javax.swing.JOptionPane
 showInputDialog
 showMessageDialog

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

Review Exercises  163

• R4.1	 Write declarations for storing the following quantities. Choose between integers and
floating-point numbers. Declare constants when appropriate.

a.	The number of days per week
b.	The number of days until the end of the semester
c.	The number of centimeters in an inch
d.	The height of the tallest person in your class, in centimeters

• R4.2	 What is the value of mystery after this sequence of statements?
int mystery = 1;
mystery = 1 - 2 * mystery;
mystery = mystery + 1;

• R4.3	 What is wrong with the following sequence of statements?
int mystery = 1;
mystery = mystery + 1;
int mystery = 1 - 2 * mystery;

•• R4.4	 Write the following Java expressions in mathematical notation.
a.	dm = m * (Math.sqrt(1 + v / c) / Math.sqrt(1 - v / c) - 1);
b.	volume = Math.PI * r * r * h;
c.	volume = 4 * Math.PI * Math.pow(r, 3) / 3;
d.	z = Math.sqrt(x * x + y * y);

•• R4.5	 Write the following mathematical expressions in Java.

s s v t gt

G
a

p m m

= + +

=
+

= ⋅ +0 0
2

2
3

2
1 2

1
2

4

1

π
()

FV PV
INT
1000

YRS⎛
⎝⎜

⎞
⎠⎟

= + −c a b ab2 2 2 cosγ

•• R4.6	 Assuming that a and b are variables of type int, fill in the following table:

a b Math.pow(a, b) Math.max(a, b) a / b a % b Math.floorMod(a, b)

2 3

3 2

2 –3

3 –2

–3 2

–3 –2

R E V I E W E X E R C I S E S

164  Chapter 4  Fundamental Data Types

•• R4.7	 Suppose direction is an integer angle between 0 and 359 degrees. You turn by a given
angle and update the direction as

direction = (direction + turn) % 360;

In which situation do you get the wrong result? How can you fix that without using
the Math.floorMod method described in Java 8 Note 4.1?

•• R4.8	 What are the values of the following expressions? In each line, assume that
double x = 2.5;
double y = -1.5;
int m = 18;
int n = 4;

a.	x + n * y - (x + n) * y
b.	m / n + m % n
c.	5 * x - n / 5
d.	1 - (1 - (1 - (1 - (1 - n))))
e.	Math.sqrt(Math.sqrt(n))

• R4.9	 What are the values of the following expressions, assuming
that n is 17 and m is 18?

a.	n / 10 + n % 10
b.	n % 2 + m % 2
c.	(m + n) / 2

d.	(m + n) / 2.0
e.	(int) (0.5 * (m + n))
f.	 (int) Math.round(0.5 * (m + n))

•• R4.10	 What are the values of the following expressions? In each line, assume that
String s = "Hello";
String t = "World";

a.	s.length() + t.length()
b.	s.substring(1, 2)
c.	s.substring(s.length() / 2, s.length())
d.	s + t
e.	t + s

• R4.11	 Find at least five compile-time errors in the following program.
public class HasErrors
{
 public static void main();
 {
 System.out.print(Please enter two numbers:)
 x = in.readDouble;
 y = in.readDouble;
 System.out.printline("The sum is " + x + y);
 }
}

•• R4.12	 Find three run-time errors in the following program.
public class HasErrors
{
 public static void main(String[] args)
 {
 int x = 0;
 int y = 0;
 Scanner in = new Scanner("System.in");

Review Exercises  165

 System.out.print("Please enter an integer:");
 x = in.readInt();
 System.out.print("Please enter another integer: ");
 x = in.readInt();
 System.out.println("The sum is " + x + y);
 }
}

•• R4.13	 Consider the following code:
CashRegister register = new CashRegister();
register.recordPurchase(19.93);
register.receivePayment(20, 0, 0, 0, 0);
System.out.print("Change: ");
System.out.println(register.giveChange());

The code segment prints the total as 0.07000000000000028. Explain why. Give a recom-
mendation to improve the code so that users will not be confused.

• R4.14	 Explain the differences between 2, 2.0, '2', "2", and "2.0".

• R4.15	 Explain what each of the following program segments computes.
a.	x = 2;

y = x + x;

b.	s = "2";
t = s + s;

•• R4.16	 Write pseudocode for a program that reads a word and then prints the first character,
the last character, and the characters in the middle. For example, if the input is Harry,
the program prints H y arr.

•• R4.17	 Write pseudocode for a program that reads a name (such as Harold James Morgan) and
then prints a monogram consisting of the initial letters of the first, middle, and last
name (such as HJM).

••• R4.18	 Write pseudocode for a program that computes the first and last digit of a number.
For example, if the input is 23456, the program should print 2 and 6. Hint: Use % and
Math.log10.

• R4.19	 Modify the pseudocode for the program in How To 4.1 so that the program gives
change in quarters, dimes, and nickels. You can assume that the price is a multiple of
5 cents. To develop your pseudocode, first work with a couple of specific values.

••• R4.20	 In Worked Example 4.1, it is easy enough to measure the width of a pyramid. To
measure the height without climbing to the top, you can use a theodolite and deter-
mine the angle between the ground and the line joining the theodolite’s position and
the top of the pyramid. What other information do you need in order to compute
the surface area?

••• R4.21	 Suppose an ancient civilization had constructed circular pyramids. Write a program
that determines the surface area from measurements that you can determine from
the ground.

•• R4.22	 A cocktail shaker is composed of three cone sections.
Using realistic values for the radii and heights, compute the total volume, using the
formula given in Self Check 21 for a cone section. Then develop an algorithm that
works for arbitrary dimensions.

© Media Bakery.

©
 M

ed
ia

 B
ak

er
y.

166  Chapter 4  Fundamental Data Types

••• R4.23	 You are cutting off a piece of pie like this, where c is the length of the straight part
(called the chord length) and h is the height of the piece.
There is an approximate formula for the area:

A ch
h

c
≈ +2

3

3

2
However, h is not so easy to measure, whereas the
diameter d of a pie is usually well-known. Calculate
the area where the diameter of the pie is 12 inches
and the chord length of the segment is 10 inches.
Generalize to an algorithm that yields the area for
any diameter and chord length.

•• R4.24	 The following pseudocode describes how to obtain
the name of a day, given the day number (0 = Sunday, 1 = Monday, and so on.)

Declare a string called names containing "SunMonTueWedThuFriSat".
Compute the starting position as 3 x the day number.
Extract the substring of names at the starting position with length 3.

Check this pseudocode, using the day number 4. Draw a diagram of the string that is
being computed, similar to Figure 3.

••• R4.25	 The following pseudocode describes how to swap two letters in a word.

We are given a string str and two positions i and j. (i comes before j)
Set first to the substring from the start of the string to the last position before i.
Set middle to the substring from positions i + 1 to j - 1.
Set last to the substring from position j + 1 to the end of the string.
Concatenate the following five strings: first, the string containing just the character at position j,

middle, the string containing just the character at position i, and last.
Check this pseudocode, using the string "Gateway" and positions 2 and 4. Draw a
diagram of the string that is being computed, similar to Figure 3.

•• R4.26	 How do you get the first character of a string? The last character? How do you
remove the first character? The last character?

•• R4.27	 For each of the following computations in Java, determine whether the result is
exact, an overflow, or a roundoff error.

a.	2.0 – 1.1
b.	1.0E6 * 1.0E6

hc

d

c.	65536 * 65536
d.	1_000_000L * 1_000_000L

••• R4.28	 Write a program that prints the values
3 * 1000 * 1000 * 1000
3.0 * 1000 * 1000 * 1000

Explain the results.

• E4.1	 Write a program that displays the dimensions of a letter-size (8.5 × 11 inches) sheet
of paper in millimeters. There are 25.4 millimeters per inch. Use constants and com-
ments in your program.

P R A C T I C E E X E R C I S E S

Practice Exercises  167

• E4.2	 Write a program that computes and displays the perimeter of a letter-size (8.5 × 11
inches) sheet of paper and the length of its diagonal.

• E4.3	 Write a program that reads a number and displays the square, cube, and fourth
power. Use the Math.pow method only for the fourth power.

•• E4.4	 Write a program that prompts the user for two integers and then prints
•	 The sum
•	 The difference
•	 The product
•	 The average
•	 The distance (absolute value of the difference)
•	 The maximum (the larger of the two)
•	 The minimum (the smaller of the two)

Hint: The max and min functions are declared in the Math class.

•• E4.5	 Enhance the output of Exercise E4.4 so that the numbers are properly aligned:
Sum: 45
Difference: -5
Product: 500
Average: 22.50
Distance: 5
Maximum: 25
Minimum: 20

•• E4.6	 Write a program that prompts the user for a measurement in meters and then con
verts it to miles, feet, and inches.

• E4.7	 Write a program that prompts the user for a radius and then prints
•	 The area and circumference of a circle with that radius
•	 The volume and surface area of a sphere with that radius

•• E4.8	 Write a program that asks the user for the lengths of a rectangle’s sides. Then print
•	 The area and perimeter of the rectangle
•	 The length of the diagonal (use the Pythagorean theorem)

• E4.9	 Improve the program discussed in How To 4.1 to allow input of quarters in addition
to bills.

•• E4.10	 Write a program that asks the user to input
•	 The number of gallons of gas in the tank
•	 The fuel efficiency in miles per gallon
•	 The price of gas per gallon

Then print the cost per 100 miles and how far the car can go with the gas in the tank.

•• E4.11	 Change the Menu class in Worked Example 3.1 so that the menu options are labeled A,
B, C, and so on. Hint: Make a string of the labels.

• E4.12	 File names and extensions. Write a program that prompts the user for the drive letter
(C), the path (\Windows\System), the file name (Readme), and the extension (txt). Then
print the complete file name C:\Windows\System\Readme.txt. (If you use UNIX or a
Macintosh, skip the drive name and use / instead of \ to separate directories.)

168  Chapter 4  Fundamental Data Types

••• E4.13	 Write a program that reads a number between 1,000 and 999,999 from the user, where
the user enters a comma in the input. Then print the number without a comma.
Here is a sample dialog; the user input is in color:

Please enter an integer between 1,000 and 999,999: 23,456
23456

Hint: Read the input as a string. Measure the length of the string. Suppose it contains
n characters. Then extract substrings consisting of the first n – 4 characters and the
last three characters.

•• E4.14	 Write a program that reads a number between 1,000 and 999,999 from the user and
prints it with a comma separating the thousands. Here is a sample dialog; the user
input is in color:

Please enter an integer between 1000 and 999999: 23456
23,456

• E4.15	 Printing a grid. Write a program that prints the following grid to play tic-tac-toe.
+--+--+--+
| | | |
+--+--+--+
| | | |
+--+--+--+
| | | |
+--+--+--+

Of course, you could simply write seven statements of the form

System.out.println("+--+--+--+");

You should do it the smart way, though. Declare string variables to hold two kinds
of patterns: a comb-shaped pattern and the bottom line. Print the comb three times
and the bottom line once.

•• E4.16	 Write a program that reads in an integer and breaks it into a sequence of individual
digits. For example, the input 16384 is displayed as

1 6 3 8 4

You may assume that the input has no more than five digits and is not negative.

•• E4.17	 Write a program that reads two times in military format (0900, 1730) and prints the
number of hours and minutes between the two times. Here is a sample run. User
input is in color.

Please enter the first time: 0900
Please enter the second time: 1730
8 hours 30 minutes

Extra credit if you can deal with the case where the first time is later than the second:
Please enter the first time: 1730
Please enter the second time: 0900
15 hours 30 minutes

••• E4.18	 Writing large letters. A large letter H can be produced like this:
* *
* *

* *
* *

Practice Exercises  169

It can be declared as a string literal like this:
final string LETTER_H = "* *\n* *\n*****\n* *\n* *\n";

(The \n escape sequence denotes a “newline” character that causes subsequent
characters to be printed on a new line.) Do the same for the letters E, L, and O. Then
write the message

H
E
L
L
O

in large letters.

•• E4.19	 Write a program that transforms numbers 1, 2, 3, …, 12
into the corresponding month names January, February,
March, …, December. Hint: Make a very long string "January
February March ...", in which you add spaces such that
each month name has the same length. Then use substring
to extract the month you want.

•• E4.20	 Write a program that prints a Christmas tree:
 /\
 / \
 / \
/ \

 " "
 " "
 " "

Remember to use escape sequences.

•• E4.21	 Enhance the CashRegister class by adding separate methods enterDollars, enter
Quarters, enterDimes, enterNickels, and enterPennies.
Use this tester class:

public class CashRegisterTester
{
 public static void main (String[] args)
 {
 CashRegister register = new CashRegister();
 register.recordPurchase(20.37);
 register.enterDollars(20);
 register.enterQuarters(2);
 System.out.println("Change: " + register.giveChange());
 System.out.println("Expected: 0.13");
 }
}

•• E4.22	 Implement a class IceCreamCone with methods getSurfaceArea() and getVolume(). In the
constructor, supply the height and radius of the cone. Be careful when looking up
the formula for the surface area—you should only include the outside area along the
side of the cone because the cone has an opening on the top to hold the ice cream.

•• E4.23	 Implement a class SodaCan whose constructor receives the height and diameter of the
soda can. Supply methods getVolume and getSurfaceArea. Supply a SodaCanTester class
that tests your class.

© José Luis Gutiérrez/iStockphoto.

©
 J

os
é

L
ui

s
G

ut
ié

rr
ez

/iS
to

ck
ph

ot
o.

170  Chapter 4  Fundamental Data Types

••• E4.24	 Implement a class Balloon that models a spherical balloon that is being filled with air.
The constructor constructs an empty balloon. Supply these methods:

•	 void addAir(double amount) adds the given amount of air
•	 double getVolume() gets the current volume
•	 double getSurfaceArea() gets the current surface area
•	 double getRadius() gets the current radius

Supply a BalloonTester class that constructs a balloon, adds 100 cm3 of air, tests the three
accessor methods, adds another 100 cm3 of air, and tests the accessor methods again.

••• P4.1	 Write a program that helps a person decide
whether to buy a hybrid car. Your program’s
inputs should be:

•	 The cost of a new car
•	 The estimated miles driven per year
•	 The estimated gas price
•	 The efficiency in miles per gallon
•	 The estimated resale value after 5 years

Compute the total cost of owning the car for five years. (For simplicity, we will not
take the cost of financing into account.) Obtain realistic prices for a new and used
hybrid and a comparable car from the Web. Run your program twice, using today’s
gas price and 15,000 miles per year. Include pseudocode and the program runs with
your assignment.

•• P4.2	 Easter Sunday is the first Sunday after the first full moon of spring. To compute
the date, you can use this algorithm, invented by the mathematician Carl Friedrich
Gauss in 1800:

1.	Let y be the year (such as 1800 or 2001).
2.	Divide y by 19 and call the remainder a. Ignore the quotient.
3.	Divide y by 100 to get a quotient b and a remainder c.
4.	Divide b by 4 to get a quotient d and a remainder e.
5.	Divide 8 * b + 13 by 25 to get a quotient g. Ignore the remainder.
6.	Divide 19 * a + b - d - g + 15 by 30 to get a remainder h. Ignore the quotient.
7.	Divide c by 4 to get a quotient j and a remainder k.
8.	Divide a + 11 * h by 319 to get a quotient m. Ignore the remainder.
9.	Divide 2 * e + 2 * j - k - h + m + 32 by 7 to get a remainder r. Ignore the

quotient.
10. Divide h - m + r + 90 by 25 to get a quotient n. Ignore the remainder.
11. Divide h - m + r + n + 19 by 32 to get a remainder p. Ignore the quotient.

Then Easter falls on day p of month n. For example, if y is 2001:
a = 6	 g = 6	 m = 0	 n = 4
b = 20, c = 1	 h = 18	 r = 6	 p = 15
d = 5, e = 0	 j = 0, k = 1

© asiseeit/iStockphoto.

P R O G R A M M I N G P R O J E C T S

©
 a

si
se

ei
t/

iS
to

ck
ph

ot
o.

Programming Projects  171

Therefore, in 2001, Easter Sunday fell on April 15. Write a program that prompts the
user for a year and prints out the month and day of Easter Sunday.

••• P4.3	 In this project, you will perform calculations with triangles. A triangle is defined by
the x- and y-coordinates of its three corner points.
Your job is to compute the following properties of a given triangle:

•	 the lengths of all sides
•	 the angles at all corners
•	 the perimeter
•	 the area

Implement a Triangle class with appropriate methods. Supply a program that
prompts a user for the corner point coordinates and produces a nicely formatted
table of the triangle properties.

•• P4.4	 A boat floats in a two-dimensional ocean. It has a position and a direction. It can
move by a given distance in its current direction, and it can turn by a given angle.
Provide methods

public double getX()
public double getY()
public double getDirection()
public void turn(double degrees)
public void move(double distance)

••• P4.5	 The CashRegister class has an unfortunate limitation: It is closely tied to the coin sys
tem in the United States and Canada. Research the system used in most of Europe.
Your goal is to produce a cash register that works with euros and cents. Rather than
designing another limited CashRegister implementation for the European market,
you should design a separate Coin class and a cash register that can work with coins of
all types.

•• Business P4.6	 The following pseudocode describes how a bookstore computes the price of an
order from the total price and the number of the books that were ordered.

Read the total book price and the number of books.
Compute the tax (7.5 percent of the total book price).
Compute the shipping charge ($2 per book).
The price of the order is the sum of the total book price, the tax, and the shipping charge.
Print the price of the order.

Translate this pseudocode into a Java program.

•• Business P4.7	 The following pseudocode describes how to turn a string containing a ten-digit
phone number (such as "4155551212") into a more readable string with parentheses
and dashes, like this: "(415) 555-1212".

Take the substring consisting of the first three characters and surround it with "(" and ") ". This is
the area code.

Concatenate the area code, the substring consisting of the next three characters, a hyphen, and the
substring consisting of the last four characters. This is the formatted number.

Translate this pseudocode into a Java program that reads a telephone number into a
string variable, computes the formatted number, and prints it.

172  Chapter 4  Fundamental Data Types

•• Business P4.8	 The following pseudocode describes how to extract the dollars and cents from a
price given as a floating-point value. For example, a price 2.95 yields values 2 and 95
for the dollars and cents.

Assign the price to an integer variable dollars.
Multiply the difference price - dollars by 100 and add 0.5.
Assign the result to an integer variable cents.

Translate this pseudocode into a Java program. Read a price and print the dollars and
cents. Test your program with inputs 2.95 and 4.35.

•• Business P4.9	 Giving change. Implement a program that directs a cashier
how to give change. The program has two inputs: the
amount due and the amount received from the customer.
Display the dollars, quarters, dimes, nickels, and pennies
that the customer should receive in return. In order to avoid
roundoff errors, the program user should supply both
amounts in pennies, for example 274 instead of 2.74.

• Business P4.10	 An online bank wants you to create a program that shows prospective customers
how their deposits will grow. Your program should read the initial balance and the
annual interest rate. Interest is compounded monthly. Print out the balances after the
first three months. Here is a sample run:

Initial balance: 1000
Annual interest rate in percent: 6.0
After first month: 1005.00
After second month: 1010.03
After third month: 1015.08

•• Business P4.11	 A video club wants to reward its best members with a discount based on the mem-
ber’s number of movie rentals and the number of new members referred by the
member. The discount is in percent and is equal to the sum of the rentals and the
referrals, but it cannot exceed 75 percent. (Hint: Math.min.) Write a program Discount-
Calculator to calculate the value of the discount.
Here is a sample run:

Enter the number of movie rentals: 56
Enter the number of members referred to the video club: 3
The discount is equal to: 59.00 percent.

• Science P4.12	 Consider the following circuit.

R1

R2 R3

Write a program that reads the resistances of the three resistors and computes the
total resistance, using Ohm’s law.

© Captain�ash/iStockphoto.

©
 C

ap
ta

in
fl

as
h/

iS
to

ck
ph

ot
o.

Programming Projects  173

•• Science P4.13	 The dew point temperature Td can be calculated (approximately) from the relative
humidity RH and the actual temperature T by

T
b f T RH

a f T RH

f T RH
a T
b T

RH

d =
⋅ ()
− ()

() = ⋅
+

+ ()

,

,

, ln

where a = 17.27 and b = 237.7° C.
Write a program that reads the relative humidity (between 0 and 1) and the tempera-
ture (in degrees C) and prints the dew point value. Use the Java function log to
compute the natural logarithm.

••• Science P4.14	 The pipe clip temperature sensors shown here are robust sensors that can be clipped
directly onto copper pipes to measure the temperature of the liquids in the pipes.

Each sensor contains a device called a thermistor. Thermistors are semiconductor
devices that exhibit a temperature-dependent resistance described by:

R R e T T=
−

⎛

⎝
⎜

⎞

⎠
⎟

0

1 1

0

β

where R is the resistance (in Ω) at the temperature T (in °K), and R0 is the resistance
(in Ω) at the temperature T0 (in °K). β is a constant that depends on the material used
to make the thermistor. Thermistors are specified by providing values for R0, T0,
and β.
The thermistors used to make the pipe clip temperature sensors have R0 = 1075 Ω
at T0 = 85 °C, and β = 3969 °K. (Notice that β has units of °K. Recall that the tem-
perature in °K is obtained by adding 273 to the temperature in °C.) The liquid
temperature, in °C, is determined from the resistance R, in Ω, using

T
T

T
R

R

=
⎛

⎝
⎜

⎞

⎠
⎟ +

−
β

β

0

0
0

273

ln

Write a Java program that prompts the user for the thermistor resistance R and prints
a message giving the liquid temperature in °C.

••• Science P4.15	 The circuit shown below illustrates some important
aspects of the connection between a power company
and one of its customers. The customer is represented
by three parameters, Vt, P, and pf. Vt is the voltage
accessed by plugging into a wall outlet. Customers
depend on having a dependable value of Vt in order for
their appliances to work properly. Accordingly, the
power company regulates the value of Vt carefully.

© TebNad/iStockphoto.

©
 T

eb
N

ad
/iS

to
ck

ph
ot

o.

174  Chapter 4  Fundamental Data Types

P describes the amount of power used by the customer and is the primary factor in
determining the customer’s electric bill. The power factor, pf, is less familiar. (The
power factor is calculated as the cosine of an angle so that its value will always be
between zero and one.) In this problem you will be asked to write a Java program to
investigate the significance of the power factor.

Vs

Customer

+
–

R = 10 Ω

Power
Lines

Power
Company

R = 10 Ω

P = 260 W
pf = 0.6

Vt = 120 Vrms

+

–

In the figure, the power lines are represented, somewhat simplistically, as resistances
in Ohms. The power company is represented as an AC voltage source. The source
voltage, Vs, required to provide the customer with power P at voltage Vt can be
determined using the formula

V V
RP
V

RP
pf V

pfs t
t t

= +
⎛

⎝⎜
⎞

⎠⎟
+

⎛

⎝⎜
⎞

⎠⎟
−()2 2

1
2 2

2

(Vs has units of Vrms.) This formula indicates that the value of Vs depends on the
value of pf. Write a Java program that prompts the user for a power factor value and
then prints a message giving the corresponding value of Vs, using the values for P, R,
and Vt shown in the figure above.

••• Science P4.16	 Consider the following tuning circuit connected to an antenna, where C is a variable
capacitor whose capacitance ranges from Cmin to Cmax.

L C

Antenna

The tuning circuit selects the frequency f
LC

= 2π . To design this circuit for a given

frequency, take C C C= min max and calculate the required inductance L from f and

C. Now the circuit can be tuned to any frequency in the range f
LCmin

max

= 2π
 to

f
LCmax

min

= 2π
.

Write a Java program to design a tuning circuit for a given frequency, using a variable
capacitor with given values for Cmin and Cmax. (A typical input is f = 16.7 MHz,
Cmin = 14 pF, and Cmax = 365 pF.) The program should read in f (in Hz), Cmin and

Answers to Self-Check Questions  175

Cmax (in F), and print the required inductance value and the range of frequencies to
which the circuit can be tuned by varying the capacitance.

• Science P4.17	 According to the Coulomb force law, the electric force between two charged

particles of charge Q1 and Q2 Coulombs, that are a distance r meters apart, is

F
Q Q

r
= 1 2

24π ε
 Newtons, where ε = × −8 854 10 12. Farads/meter. Write a program

that calculates the force on a pair of charged particles, based on the user input of

Q1 Coulombs, Q2 Coulombs, and r meters, and then computes and displays the

electric force.

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 int and double.
2.	 The world’s most populous country, China, has

about 1.2 x 109 inhabitants. Therefore, individ-
ual population counts could be held in an int.
However, the world population is over 6 × 109.
If you compute totals or averages of multiple
countries, you can exceed the largest int value.
Therefore, double is a better choice. You could
also use long, but there is no benefit because the
exact population of a country is not known at
any point in time.

3.	 The first initialization is incorrect. The right
hand side is a value of type double, and it is not
legal to initialize an int variable with a double
value. The second initialization is correct—an
int value can always be converted to a double.

4.	 The first declaration is used inside a method,
the second inside a class.

5.	 Two things: You should use a named constant,
not the “magic number” 3.14, and 3.14 is not
an accurate representation of π.

6.	 double interest = balance * percent / 100;
7.	 double sideLength = Math.sqrt(area);
8.	 4 * PI * Math.pow(radius, 3) / 3

or (4.0 / 3) * PI * Math.pow(radius, 3),
but not (4 / 3) * PI * Math.pow(radius, 3)

9.	 17 and 29
10.	 It is the second-to-last digit of n. For example,

if n is 1729, then n / 10 is 172, and (n / 10) % 10
is 2.

11.	 System.out.print("How old are you? ");
int age = in.nextInt();

12.	 There is no prompt that alerts the program
user to enter the quantity.

13.	 The second statement calls nextInt, not next-
Double. If the user were to enter a price such as
1.95, the program would be terminated with an
“input mismatch exception”.

14.	 There is no colon and space at the end of the
prompt. A dialog would look like this:
Please enter the number of cans6

15.	 The total volume is 10
There are four spaces between is and 10. One
space originates from the format string (the
space between is and %), and three spaces are
added before 10 to achieve a field width of 5.

16.	 Here is a simple solution:
System.out.printf("Bottles: %8d\n", bottles);
System.out.printf("Cans: %8d\n", cans);

Note the spaces after Cans:. Alternatively,
you can use format specifiers for the strings.
You can even combine all output into a single
statement:
System.out.printf("%-9s%8d\n%-9s%8d\n",
"Bottles: ", bottles, "Cans:", cans);

17.	 int pairs = (totalWidth - tileWidth)
 / (2 * tileWidth);
int tiles = 1 + 2 * pairs;
double gap = (totalWidth -
 tiles * tileWidth) / 2.0;

Be sure that pairs is declared as an int.

176  Chapter 4  Fundamental Data Types

18.	 Now there are groups of four tiles (gray/
white/gray/black) following the initial black
tile. Therefore, the algorithm is now

number of groups = integer part of (total width - tile width)
/ (4 x tile width)

number of tiles = 1 + 4 x number of groups
The formula for the gap is not changed.

19.	 The answer depends only on whether the row
and column numbers are even or odd, so let’s
first take the remainder after dividing by 2.
Then we can enumerate all expected answers:

Row % 2  Column % 2  Color
	 0 	 0 	 0
	 0	 1	 1
	 1	 0	 1
	 1	 1	 0
In the first three entries of the table, the color
is simply the sum of the remainders. In the
fourth entry, the sum would be 2, but we want
a zero. We can achieve that by taking another
remainder operation:

color = ((row % 2) + (column % 2)) % 2
20.	 In nine years, the repair costs increased by

$1,400. Therefore, the increase per year is
$1,400 / 9 ≈ $156. The repair cost in year 3
would be $100 + 2 × $156 = $412. The repair
cost in year n is $100 + n × $156. To avoid
accumulation of roundoff errors, it is actually
a good idea to use the original expression that
yielded $156, that is,

Repair cost in year n = 100 + n x 1400 / 9

21.	 The pseudocode follows from the equations:

bottom volume = π  x  r1
2  x  h1

top volume = π  x  r2
2  x  h2

middle volume = π  x  (r1
2  +  r1  x  r2  +  r2

2)  x  h3  /  3
total volume = bottom volume + top volume + middle volume

Measuring a typical wine bottle yields
r1 = 3.6, r2 = 1.2, h1 = 15, h2 = 7, h3 = 6
(all in centimeters). Therefore,
bottom volume = 610.73
top volume = 31.67
middle volume = 135.72
total volume = 778.12
The actual volume is 750 ml, which is close
enough to our computation to give confidence
that it is correct.

22.	 The length is 12. The space counts as a
character.

23.	 str.substring(8, 12) or str.substring(8)
24.	 str = str + "ming";
25.	 Hy
26.	 String first = in.next();

String middle = in.next();
String last = in.next();

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Computing the Volume and Surface Area of a Pyramid   WE1

Step 1	 Understand the problem: What are the inputs? What are the desired outputs?

Make a list of all the values that can vary. It is common for beginners to implement classes that
are overly specific. For example, you may know that the great pyramid of Giza, the largest of
the Egyptian pyramids, has a height of 146 meters and a base length of 230 meters. You should
not use these numbers in your implementation, even if the original problem only asked about
the great pyramid. It is just as easy—and far more useful—to write a class that describes any
pyramid.

In our case, a pyramid is described by its height and base length. The desired outputs are the
volume and surface area.

Step 2	 Work out examples by hand.

An Internet search yields the following diagram for geometric computations with square-
based pyramids:

b

b

s

h

Surface Area A = 2bs + b2

Volume V = – b2h
3
1

The volume is straightforward. Consider a pyramid whose base and height are 10 cm
each. Then the volume is 1/3 × 102 × 10 = 333.3 cm3, or 1/3 of the volume of a cube with side
length of 10 cm. That makes sense if you are familiar with Archimedes’ famous decomposition
of a cube into three pyramids.

The surface area is not so clear. Looking at the formula A = 2bs + b2, we note that the for-
mula gives the entire area, including the square bottom. That’s what you would need if you
wanted to find out how much paint you need for a paper model of a pyramid. But do our
researchers care about the bottom square that is not exposed? You would need to check back
with them. Let’s say they reply that they only want the part above the ground. Then the for-
mula becomes A = 2bs.

Unfortunately, the value s is not one of our inputs, so we need to compute it. Look at the
colored triangle in the figure above. It is a right triangle with sides s, h, and b / 2. The Pythago-
rean theorem tells us that s2 = h2 + (b / 2)2.

Now let’s try again. If h and b are both 10, then s2 is 102 + 52 = 125, and s is 125. Then the
area is A = 2bs = 20 × 125, or about 224. This is plausible because four sides of a cube with side

© Tom Horyn/iStockphoto.

Worked Example 4.1	 Computing the Volume and
Surface Area of a Pyramid

In this Worked Example, we develop a solution to a
computational problem.

Problem Statement  Suppose that you are helping
archaeologists who research Egyptian pyramids. You
have taken on the task of writing a method that deter-
mines the volume and surface area of a pyramid, given
its height and base length.

© Holger Mette/iStockphoto.

© Alex Slobodkin/iStockphoto.

©
 H

ol
ge

r
M

et
te

/iS
to

ck
ph

ot
o.

WE2  Chapter 4  Fundamental Data Types

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

length 10 have area 400, and you would expect that area to be somewhat larger than the four
sides of our sample pyramid.

Having solved this example by hand, we are now better prepared to implement the neces-
sary computations in Java.

Step 3	 Design a class that carries out your computations.

According to How To 3.1, we need to determine methods and instance variables for our class.
In our case, the problem statement yields the following constructor and methods:
•	 public Pyramid(double height, double baseLength)
•	 public double getVolume()
•	 public double getSurfaceArea()
Determining the instance variables requires some thought. Consider these alternatives:
•	 A pyramid stores its height and base length. The volume and surface area are computed as

needed in the getVolume and getSurfaceArea methods.
•	 A pyramid stores its volume and surface area. They are computed in the constructor from

the height and baseLength, which are then discarded.
Both approaches will work for our problem. There is no simple rule as to which design is
better. One way of settling the question is to consider how the Pyramid class might evolve.
More methods for geometrical computations (such as angles) might be added. There might
be methods to resize the pyramid. The first alternative makes it easier to accommodate those
scenarios. Moreover, it seems more object-oriented. A pyramid is described by its height and
base, not by its volume and surface area.

Step 4	 Write pseudocode for implementing the methods.

As already described, the volume is simply

volume = (base x base x height) / 3
For the surface area, we first need the side length

side length = square root of (height x height + base x base / 4)
Then we have

surface area = 2 x base x side length

Step 5	 Implement the class.

As decided in Step 3, we have instance variables for the height and base length:

public class Pyramid
{
 private double height;
 private double baseLength;
 . . .
}

The methods for computing the volume and surface area are now straightforward.

public double getVolume()
{
 return height * baseLength * baseLength / 3;
}

public double getSurfaceArea()
{
 double sideLength = Math.sqrt(height * height
 + baseLength * baseLength / 4);
 return 2 * baseLength * sideLength;

Computing the Volume and Surface Area of a Pyramid   WE3

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

}

There is a minor issue with the constructor. As described in Step 3, the parameter variables of
the constructor are identical to those of the instance variables:

public Pyramid(double height, double baseLength)

One solution is simply to rename the constructor parameter variables:

public Pyramid(double aHeight, double aBaseLength)
{
 height = aHeight;
 baseLength = aBaseLength;
}

This approach has a small disadvantage. The awkward parameter variable names leak into the
API documentation:

/**
 Constructs a pyramid with a given height and base length.
 @param aHeight the height
 @param aBaseLength the length of one of the sides of the square base
*/

If you prefer, you can avoid that issue by using the this reference as follows:

public Pyramid(double height, double baseLength)
{
 this.height = height;
 this.baseLength = baseLength;
}

We have now completed the class implementation. You can find the complete program in the
ch04/worked_example_1 directory of the book’s companion code.

Step 6	 Test your class.

We can use the computations from Step 2 as a test case:

Pyramid sample = new Pyramid(10, 10);
System.out.println(sample.getVolume());
System.out.println("Expected: 333.33");
System.out.println(sample.getSurfaceArea());
System.out.println("Expected: 224");

It is a good idea to have another test case where the height and base are different, to check that
the constructor is taking the parameters in the correct order. An Internet search yields an esti-
mate of about 2,500,000 cubic meters for the Giza pyramid.

Pyramid gizeh = new Pyramid(146, 230);
System.out.println(gizeh.getVolume());
System.out.println("Expected: 2500000");

The program output is:

333.3333333333333
Expected: 333.33
223.60679774997897
Expected: 224
2574466.6666666665
Expected: 2500000

The answers match well, and we decide that the test was successful.

Computing Travel Time   WE5

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 1	 Understand the problem: What are the inputs? What are the desired outputs?

You will be given the following inputs:
•	 The distance between the robot and the item in the x- and y-direction (dx and dy)
•	 The speed of the robot on the road and the rocky terrain (s1 and s2)
•	 The length l1 of the first segment (on the road)

dy

dx

Item

Robot

l1

Speed = s1

Speed
 = s 2

l2

You are expected to compute the total travel time.

Step 2	 Work out examples by hand.

To calculate an example by hand, let’s assume the following dimensions:

Item

Robot
10 km

3 km

6 km

Speed = 5 km/h

Speed
 = 2 km/h

The total time is the time for traversing both segments. The time to traverse the first segment is
simply the length of the segment divided by the speed: 6 km divided by 5 km/h, or 1.2 hours.

To compute the time for the second segment, we first need to know its length. It is the
hypotenuse of a right triangle with side lengths 3 and 4.

© Tom Horyn/iStockphoto.

Worked Example 4.2	 Computing Travel Time

In this Worked Example, we develop a hand calculation to com-
pute travel time that we then use to develop pseudocode and pro-
gram statements that will perform the calculation.

Problem Statement  A robot needs to retrieve an item that is
located in rocky terrain adjacent to a road. The robot can travel at
a faster speed on the road than on the rocky terrain, so it will want
to do so for a certain distance before moving on a straight line to
the item. Your task is to compute the total time taken by the robot
to reach its goal.

Courtesy NASA.

© Alex Slobodkin/iStockphoto.

C
ou

rt
es

y
N

A
SA

.

WE6  Chapter 4  Fundamental Data Types

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Item

6 4

3

Therefore, its length is 3 4 52 2+ = . At 2 km/h, it takes 2.5 hours to traverse it. That makes
the total travel time 3.7 hours.

Step 3	 Write pseudocode for implementing the computation.

Look again at the steps in the hand calculation. The steps didn’t depend on the particular val-
ues. Therefore, you can reformulate them as pseudocode by replacing the actual values with
their names:

Time for segment 1 = l1 / s1
Length of segment 2 = square root of (dx - l1)

2 + dy2
Time for segment 2 = length of segment 2 / s2
Total time = time for segment 1 + time for segment 2

Step 4	 Translate the pseudocode into Java.

When you do hand calculations, it is convenient to use short variable names such as dx or s1. In
your program, you should change them to names that are longer and more descriptive.

Translated into Java, the computations are

double segment1Time = segment1Length / segment1Speed;
double segment2Length = Math.sqrt(
 Math.pow(xDistance - segment1Length, 2)
 + Math.pow(yDistance, 2));
double segment2Time = segment2Length / segment2Speed;
double totalTime = segment1Time + segment2Time;

You can find the complete program in the ch04/worked_example_2 directory of the book’s
companion code.

5C H A P T E R

177

DECIS IONS

To implement decisions using
if statements

To compare integers, floating-point numbers, and strings

To write statements using the Boolean data type

To develop strategies for testing your programs

To validate user input

CHAPTER GOALS

CHAPTER CONTENTS

5.1  THE IF STATEMENT   178

SYN 	 if Statement  180
PT 1 	 Brace Layout  181
PT 2 	 Always Use Braces  181
CE 1 	 A Semicolon After the if Condition  182
PT 3 	 Tabs  182
ST 1 	 The Conditional Operator  182
PT 4 	 Avoid Duplication in Branches  183

5.2  COMPARING VALUES  183

SYN 	 Comparisons  184
CE 2 	 Using == to Compare Strings  189
HT 1 	 Implementing an if Statement  190
WE 1 	 Extracting the Middle 

© Alex Slobodkin/iStockphoto.C&S 	 Denver’s Luggage Handling System  192

5.3  MULTIPLE ALTERNATIVES  193

ST 2 	 The switch Statement  196

5.4  NESTED BRANCHES  196

PT 5 	 Hand-Tracing  200
CE 3 	 The Dangling else Problem  201
ST 3 	 Block Scope  201
ST 4 	 Enumeration Types  203

5.5  PROBLEM SOLVING:
FLOWCHARTS  203

5.6  PROBLEM SOLVING: SELECTING
TEST CASES  206

PT 6 	 Make a Schedule and Make Time for
Unexpected Problems  208

ST 5 	 Logging  208

5.7  BOOLEAN VARIABLES AND
OPERATORS  209

CE 4 	 Combining Multiple Relational
Operators  212

CE 5 	 Confusing && and || Conditions  212
ST 6 	 Short-Circuit Evaluation of Boolean

Operators  213
ST 7 	 De Morgan’s Law  213

5.8  APPLICATION: INPUT
VALIDATION  214

C&S 	 Artificial Intelligence  217

© zennie/iStockphoto.

© zennie/iStockphoto.

178

One of the essential features of computer programs is
their ability to make decisions. Like a train that changes
tracks depending on how the switches are set, a program
can take different actions depending on inputs and other
circumstances. In this chapter, you will learn how to
program simple and complex decisions. You will apply what
you learn to the task of checking user input.

5.1  The if Statement
The if statement is used to implement a decision (see Syntax 5.1 on page 180). When
a condition is fulfilled, one set of statements is executed. Otherwise, another set of
statements is executed.

Here is an example using the if statement: In many countries, the number 13 is
considered unlucky. Rather than offending superstitious tenants, building owners
sometimes skip the thirteenth floor; floor 12 is immediately followed by floor 14. Of
course, floor 13 is not usually left empty. It is simply called floor 14. The computer
that controls the building elevators needs to compensate for this foible and adjust all
floor numbers above 13.

Let’s simulate this process in Java. We will ask the user to type in the desired floor
number and then compute the actual floor. When the input is above 13, then we need
to decrement the input to obtain the actual floor. For example, if the user provides an
input of 20, the program determines the actual floor to be 19. Otherwise, it simply
uses the supplied floor number.

int actualFloor;

if (floor > 13)
{
 actualFloor = floor - 1;
}
else
{
 actualFloor = floor;
}

The flowchart in Figure 1 shows the branching behavior.
In our example, each branch of the if statement contains a single

statement. You can include as many statements in each branch as
you like. Sometimes, it happens that there is nothing to do in the else
branch of the statement. In that case, you can omit it entirely, as in
this example:

int actualFloor = floor;

if (floor > 13)
{
 actualFloor--;
}
// No else needed

See Figure 2 for the flowchart.

The if statement
allows a program to
carry out different
actions depending on
the nature of the data
to be processed.

© Media Bakery.
An if statement is like a fork in the road.
Depending upon a decision, different
parts of the program are executed.

© zennie/iStockphoto.

© zennie/iStockphoto.

©
 M

ed
ia

 B
ak

er
y.

5.1  The if Statement   179

Figure 1 
Flowchart for if Statement

floor > 13?
True False

actualFloor =
floor - 1

actualFloor =
floor

Condition

Figure 2 
Flowchart for if Statement with No else Branch

floor > 13?
True False

actualFloor--

No else branch

The following program puts the if statement to work. This program asks for the
desired floor and then prints out the actual floor.

section_1/ElevatorSimulation.java

1 import java.util.Scanner;
2
3 /**
4 This program simulates an elevator panel that skips the 13th floor.
5 */
6 public class ElevatorSimulation
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Floor: ");
12 int floor = in.nextInt();
13
14 // Adjust floor if necessary
15
16 int actualFloor;
17 if (floor > 13)
18 {
19 actualFloor = floor - 1;
20 }
21 else
22 {
23 actualFloor = floor;
24 }
25
26 System.out.println("The elevator will travel to the actual floor "
27 + actualFloor);
28 }
29 }

Program Run

Floor: 20
The elevator will travel to the actual floor 19

© DrGrounds/iStockphoto.

This elevator panel
“skips” the thirteenth
floor. The floor is not
actually missing—
the computer that
controls the eleva­
tor adjusts the floor
numbers above 13.

©
 D

rG
ro

un
ds

/iS
to

ck
ph

ot
o.

180  Chapter 5  Decisions

1.	

Syntax 5.1	 if Statement

Don’t put a semicolon here!
 See page 182.

Lining up braces
 is a good idea.
 See page 181.

if (floor > 13)
{
 actualFloor = floor - 1;
}
else
{
 actualFloor = floor;
}

A condition that is true or false.
Often uses relational operators:
== != < <= > >= (See page 184.)

If the condition is true, the statement(s)
in this branch are executed in sequence;
if the condition is false, they are skipped.

Braces are not required
if the branch contains a
single statement, but it’s
good to always use them.
 See page 181.

If the condition is false, the statement(s)
in this branch are executed in sequence;
if the condition is true, they are skipped.

Omit the else branch
if there is nothing to do.

if (condition)
{
 statements
}

if (condition) { statements1 }
else { statements2 }

Syntax

In some Asian countries, the number 14 is considered unlucky. Some building
owners play it safe and skip both the thirteenth and the fourteenth floor. How
would you modify the sample program to handle such a building?

2.	 Consider the following if statement to compute a discounted price:
if (originalPrice > 100)
{
 discountedPrice = originalPrice - 20;
}
else
{
 discountedPrice = originalPrice - 10;
}

What is the discounted price if the original price is 95? 100? 105?
3.	 Compare this if statement with the one in Self Check 2:

if (originalPrice < 100)
{
 discountedPrice = originalPrice - 10;
}
else
{
 discountedPrice = originalPrice - 20;
}

Do the two statements always compute the same value? If not, when do the
values differ?

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

5.1  The if Statement   181

4.	 Consider the following statements to compute a discounted price:
discountedPrice = originalPrice;
if (originalPrice > 100)
{
 discountedPrice = originalPrice - 10;
}

What is the discounted price if the original price is 95? 100? 105?
5.	 The variables fuelAmount and fuelCapacity hold the actual amount of fuel and the

size of the fuel tank of a vehicle. If less than 10 percent is remaining in the tank, a
status light should show a red color; otherwise it shows a green color. Simulate
this process by printing out either "red" or "green".

Practice It	 Now you can try these exercises at the end of the chapter: R5.5, R5.6, E5.10.

Brace Layout

The compiler doesn’t care where you place braces. In this
book, we follow the simple rule of making { and } line up.

if (floor > 13)
{
 floor--;
}

This style makes it easy to spot matching braces. Some pro-
grammers put the opening brace on the same line as the if:

if (floor > 13) {
 floor--;
}

This style makes it harder to match the braces, but it saves a line of code, allowing you to view
more code on the screen without scrolling. There are passionate advocates of both styles.

It is important that you pick a layout style and stick with it consistently within a given
programming project. Which style you choose may depend on your personal preference or a
coding style guide that you need to follow.

Always Use Braces

When the body of an if statement consists of a single statement, you need not use braces. For
example, the following is legal:

if (floor > 13)
 floor--;

However, it is a good idea to always include the braces:

if (floor > 13)
{
 floor--;
}

The braces make your code easier to read. They also make it easier for you to maintain the
code because you won’t have to worry about adding braces when you add statements inside
an if statement.

Programming Tip 5.1

© Eric Isselé/iStockphoto.

© Timothy Large/iStockphoto.

Properly lining up your code
makes programs easier to read.

Programming Tip 5.2

© Eric Isselé/iStockphoto.

©
 T

im
ot

hy
 L

ar
ge

/iS
to

ck
ph

ot
o.

182  Chapter 5  Decisions

A Semicolon After the if Condition

The following code fragment has an unfortunate error:

if (floor > 13) ; // Error
{
 floor--;
}

There should be no semicolon after the if condition. The compiler interprets this statement as
follows: If floor is greater than 13, execute the statement that is denoted by a single semicolon,
that is, the do-nothing statement. The statement in braces is no longer a part of the if statement.
It is always executed. In other words, even if the value of floor is not above 13, it is decremented.

Tabs

Block-structured code has the property that nested statements are indented by one or more
levels:

public class ElevatorSimulation
{
| public static void main(String[] args)
| {
| | int floor;
| | . . .
| | if (floor > 13)
| | {
| | | floor--;
| | } |
| | . . .
| } | |
0 1 2 3 Indentation level

How do you move the cursor from the leftmost column to the appropriate indentation level?
A perfectly reasonable strategy is to hit the space bar a sufficient number of times. With most
editors, you can use the Tab key instead. A tab moves the cursor to the next indentation level.
Some editors even have an option to fill in the tabs automatically.

While the Tab key is nice, some editors use tab characters for alignment, which is not
so nice. Tab characters can lead to problems when you send your file to another person or a
printer. There is no universal agreement on the width of a tab character, and some software will
ignore tab characters altogether. It is therefore best to save your files with spaces instead of
tabs. Most editors have a setting to automatically convert all tabs to spaces. Look at the docu-
mentation of your development environment to find out how to activate this useful setting.

The Conditional Operator

Java has a conditional operator of the form

condition ? value1 : value2

The value of that expression is either value1 if the test passes or value2 if it fails. For example,
we can compute the actual floor number as

actualFloor = floor > 13 ? floor - 1 : floor;

which is equivalent to

if (floor > 13) { actualFloor = floor - 1; } else { actualFloor = floor; }

Common Error 5.1

© John Bell/iStockphoto.

Programming Tip 5.3

© Eric Isselé/iStockphoto.

Photo by Vincent LaRussa/John Wiley & Sons, Inc.

You use
the Tab key
to move the
cursor to the next
indentation level.

Special Topic 5.1

© Eric Isselé/iStockphoto.

P
ho

to
 b

y
V

in
ce

nt
 L

aR
us

sa
/

Jo
hn

 W
ile

y
&

 S
on

s,
In

c.

5.2  Comparing Values   183

You can use the conditional operator anywhere that a value is expected, for example:

System.out.println("Actual floor: " + (floor > 13 ? floor - 1 : floor));

We don’t use the conditional operator in this book, but it is a convenient construct that you
will find in many Java programs.

Avoid Duplication in Branches

Look to see whether you duplicate code in each branch. If so, move it out of the if statement.
Here is an example of such duplication:

if (floor > 13)
{
 actualFloor = floor - 1;
 System.out.println("Actual floor: " + actualFloor);
}
else
{
 actualFloor = floor;
 System.out.println("Actual floor: " + actualFloor);
}

The output statement is exactly the same in both branches. This is not an error—the program
will run correctly. But you can simplify the program by moving the duplicated statement:

if (floor > 13)
{
 actualFloor = floor - 1;
}
else
{
 actualFloor = floor;
}
System.out.println("Actual floor: " + actualFloor);

Removing duplication is particularly important when programs are maintained for a long
time. When there are two sets of statements with the same effect, it can easily happen that a
programmer modifies one set but not the other.

5.2  Comparing Values
Every if statement contains a condition.
In many cases, the condition involves
comparing two values. In the following
sections, you will learn how to implement
comparisons in Java.

In Java, you use a relational operator to check
whether one value is greater than another.

Programming Tip 5.4

© Eric Isselé/iStockphoto.

© arturbo/iStockphoto.

©
 a

rt
ur

bo
/iS

to
ck

ph
ot

o.

184  Chapter 5  Decisions

5.2.1  Relational Operators

A relational operator tests the relationship between two values. An example is
the > operator that we used in the test floor > 13. Java has six relational operators (see
Table 1).

Table 1 Relational Operators

Java Math Notation Description

> > Greater than

>= ≥ Greater than or equal

< < Less than

<= ≤ Less than or equal

== = Equal

!= ≠ Not equal

 As you can see, only two Java relational operators (> and <) look as you would expect
from the mathematical notation. Computer keyboards do not have keys for ≥, ≤, or ≠,
but the >=, <=, and != operators are easy to remember because they look similar. The ==
operator is initially confusing to most newcomers to Java.

Use relational
operators
(< <= > >= == !=)
to compare numbers.

Syntax 5.2	 Comparisons

floor > 13

floor == 13

String input;
if (input.equals("Y"))

double x; double y; final double EPSILON = 1E-14;
if (Math.abs(x - y) < EPSILON)

These quantities are compared.

Checks for equality.

Check that you have the right direction:
> (greater than) or < (less than)

Use ==, not =.

One of: == != < <= > >= (See Table 1.)

Use equals to compare strings. (See page 186.)

Checks that these �oating-point numbers are very close.
 See page 185.

Check the boundary condition:
> (greater) or >= (greater or equal)?

5.2  Comparing Values   185

In Java, = already has a meaning, namely assignment. The == operator denotes
equality testing:

floor = 13; // Assign 13 to floor

if (floor == 13) // Test whether floor equals 13

You must remember to use == inside tests and to use = outside tests.
The relational operators in Table 1 have a lower precedence than the arithmetic

operators. That means you can write arithmetic expressions on either side of the rela-
tional operator without using parentheses. For example, in the expression

floor - 1 < 13

both sides (floor - 1 and 13) of the < operator are evaluated, and the results are com
pared. Appendix B shows a table of the Java operators and their precedence.

5.2.2  Comparing Floating-Point Numbers

You have to be careful when comparing floating-point numbers in order to cope with
roundoff errors. For example, the following code multiplies the square root of 2 by
itself and then subtracts 2.

double r = Math.sqrt(2);
double d = r * r - 2;
if (d == 0)
{
 System.out.println("sqrt(2) squared minus 2 is 0");
}
else
{
 System.out.println("sqrt(2) squared minus 2 is not 0 but " + d);
}

Even though the laws of mathematics tell us that 2 2
2() − equals 0, this program

fragment prints
sqrt(2) squared minus 2 is not 0 but 4.440892098500626E-16

Unfortunately, such roundoff errors are unavoidable. It plainly does not make sense
in most circumstances to compare floating-point numbers exactly. Instead, test
whether they are close enough.

To test whether a number x is close to zero, you can test whether the absolute value
|x | (that is, the number with its sign removed) is less than a very small threshold num-
ber. That threshold value is often called ε (the Greek letter epsilon). It is common to
set ε to 10–14 when testing double numbers.

Similarly, you can test whether two numbers are approximately equal by checking
whether their difference is close to 0.

x y− ≤ ε

In Java, we program the test as follows:
final double EPSILON = 1E-14;
if (Math.abs(x - y) <= EPSILON)
{
 // x is approximately equal to y
}

Relational operators
compare values. The
= = operator tests for
equality.

When comparing
floating-point
numbers, don’t test
for equality. Instead,
check whether they
are close enough.

186  Chapter 5  Decisions

5.2.3  Comparing Strings

To test whether two strings are equal to each other, you must use the method called
equals:

if (string1.equals(string2)) . . .

Do not use the == operator to compare strings. The comparison
if (string1 == string2) // Not useful

has an unrelated meaning. It tests whether the two strings are stored in the same
memory location. You can have strings with identical contents stored in different
locations, so this test never makes sense in actual programming; see Common Error
5.2 on page 189.

If two strings are not identical, you still may want to know the relationship
between them. The compareTo method compares strings in lexicographic order. This
ordering is very similar to the way in which words are sorted in a dictionary. If

string1.compareTo(string2) < 0

then the string string1 comes before the string string2 in the dictionary. For example,
this is the case if string1 is "Harry" and string2 is "Hello".

Conversely, if
string1.compareTo(string2) > 0

then string1 comes after string2 in dictionary order.
Finally, if
string1.compareTo(string2) == 0

then string1 and string2 are equal.
There are a few technical differences between the ordering in a dictionary and the

lexicographic ordering in Java. In Java:

•	 All uppercase letters come before the lowercase letters. For example, "Z" comes
before "a".

•	 The space character comes before all printable characters.
•	 Numbers come before letters.
•	 For the ordering of punctuation marks, see Appendix A.

When comparing two strings, you compare the first letters of each word, then the
second letters, and so on, until one of the strings ends or you find the first letter pair
that doesn’t match.

If one of the strings ends, the longer string is considered the “larger” one. For
example, compare "car" with "cart". The first three letters match, and we reach the
end of the first string. Therefore "car" comes before "cart" in lexicographic ordering.

When you reach a mismatch, the string
containing the “larger” character is considered
“larger”. For example, compare "cat" with "cart".
The first two letters match. Because t comes after
r, the string "cat" comes after "cart" in the lexico-
graphic ordering.

To see which of two terms comes first in the dictionary,
consider the first letter in which they differ.

Do not use the = =
operator to compare
strings. Use the
equals method
instead.

The compareTo
method compares
strings in
lexicographic order.

c a r t

c a r

c a t

Letters
match

r comes
before t

Lexicographic
Ordering

Corbis Digital Stock.

C
or

bi
s

D
ig

it
al

 S
to

ck
.

5.2  Comparing Values   187

5.2.4  Comparing Objects

If you compare two object references with the == operator, you test whether the refer-
ences refer to the same object. Here is an example:

Rectangle box1 = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

The comparison
box1 == box2

is true. Both object variables refer to the same object. But the comparison
box1 == box3

is false. The two object variables refer to different objects (see Figure 3). It does not
matter that the objects have identical contents.

You can use the equals method to test whether two rectangles have the same con-
tents, that is, whether they have the same upper-left corner and the same width and
height. For example, the test

box1.equals(box3)

is true.
However, you must be careful when using the equals method. It works correctly

only if the implementors of the class have supplied it. The Rectangle class has an equals
method that is suitable for comparing rectangles.

For your own classes, you
need to supply an appro-
priate equals method. You
will learn how to do that in
Chapter 9. Until that
point, you should not use the
equals method to compare
objects of your own classes.

Figure 3 
Comparing Object References

5.2.5  Testing for null

An object reference can have the special value null if it refers to no object at all. It is
common to use the null value to indicate that a value has never been set. For example,

String middleInitial = null; // Not set
if (. . .)
{
 middleInitial = middleName.substring(0, 1);
}

The = = operator
tests whether two
object references
are identical. To
compare the
contents of objects,
you need to use the
equals method.

box1 =

box2 =
x =

Rectangle

y =

width =

height =

5

10

20

3030

box3 =

x =

Rectangle

y =

width =

height =

5

10

20

3030

The null reference
refers to no object.

188  Chapter 5  Decisions

Table 2 Relational Operator Examples

Expression Value Comment

3 <= 4 true 3 is less than 4; <= tests for “less than or equal”.

3 =< 4 Error The “less than or equal” operator is <=, not =<.
The “less than” symbol comes first.

3 > 4 false > is the opposite of <=.

4 < 4 false The left-hand side must be strictly smaller than
the right-hand side.

4 <= 4 true Both sides are equal; <= tests for “less than or
equal”.

3 == 5 - 2 true == tests for equality.

3 != 5 - 1 true != tests for inequality. It is true that 3 is not 5 – 1.

3 = 6 / 2 Error Use == to test for equality.

1.0 / 3.0 == 0.333333333 false Although the values are very close to one another,
they are not exactly equal. See Section 5.2.2.

"10" > 5 Error You cannot compare a string to a number.

"Tomato".substring(0, 3).equals("Tom") true Always use the equals method to check whether
two strings have the same contents.

"Tomato".substring(0, 3) == ("Tom") false Never use == to compare strings; it only checks
whether the strings are stored in the same
location. See Common Error 5.2 on page 189.

You use the == operator (and not equals) to test whether an object reference is a null
reference:

if (middleInitial == null)
{
 System.out.println(firstName + " " + lastName);
}
else
{
 System.out.println(firstName + " " + middleInitial + ". " + lastName);
}

Note that the null reference is not the same as the empty string "". The empty string
is a valid string of length 0, whereas a null indicates that a string variable refers to no
string at all.

Table 2 summarizes how to compare values in Java.

6.	 Which of the following conditions are true, provided a is 3 and b is 4?
a.	 a + 1 <= b
b.	a + 1 >= b
c.	 a + 1 != b

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a program that
demonstrates com-
parisons of numbers
and strings.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

5.2  Comparing Values   189

7.	 Give the opposite of the condition
floor > 13

8.	 What is the error in this statement?
if (scoreA = scoreB)
{
 System.out.println("Tie");
}

9.	 Supply a condition in this if statement to test whether the user entered a Y:
System.out.println("Enter Y to quit.");
String input = in.next();
if (. . .)
{
 System.out.println("Goodbye.");
}

10.	 Give two ways of testing that a string str is the empty string.
11.	 What is the value of s.length() if s is

a.	 the empty string ""?
b.	the string " " containing a space?
c.	 null?

12.	 Which of the following comparisons are syntactically incorrect? Which of them
are syntactically correct, but logically questionable?
String a = "1";
String b = "one";
double x = 1;
double y = 3 * (1.0 / 3);

a.	 a == "1"
b.	a == null
c.	 a.equals("")
d.	a == b
e.	 a == x
f.	 x == y
g.	x - y == null
h.	x.equals(y)

Practice It	 Now you can try these exercises at the end of the chapter: R5.4, R5.7, E5.14.

Using == to Compare Strings

If you write

if (nickname == "Rob")

then the test succeeds only if the variable nickname refers to the exact same location as the string
literal "Rob".

The test will pass if a string variable was initialized with the same string literal:

String nickname = "Rob";
. . .
if (nickname == "Rob") // Test is true

Common Error 5.2

© John Bell/iStockphoto.

190  Chapter 5  Decisions

However, if the string with the letters R o b has been assembled in some other way, then the test
will fail:

String name = "Robert";
String nickname = name.substring(0, 3);
. . .
if (nickname == "Rob") // Test is false

In this case, the substring method produces a string in a different memory location. Even
though both strings have the same contents, the comparison fails.

You must remember never to use == to compare strings. Always use equals to check whether
two strings have the same contents.

Step 1	 Decide upon the branching condition.

In our sample problem, the obvious choice for the
condition is:

original price < 128?
That is just fine, and we will use that condition in
our solution.

But you could equally well come up with a
correct solution if you choose the opposite condi-
tion: Is the original price at least $128? You might
choose this condition if you put yourself into the
position of a shopper who wants to know when
the bigger discount applies.

Step 2	 Give pseudocode for the work that needs to be
done when the condition is true.

In this step, you list the action or actions that are taken in the “positive” branch. The details
depend on your problem. You may want to print a message, compute values, or even exit the
program.

In our example, we need to apply an 8 percent discount:

discounted price = 0.92 x original price

Step 3	 Give pseudocode for the work (if any) that needs to be done when the condition is not true.

What do you want to do in the case that the condition of Step 1 is not satisfied? Sometimes,
you want to do nothing at all. In that case, use an if statement without an else branch.

© Steve Simzer/iStockphoto.

How To 5.1	 Implementing an if Statement

This How To walks you through the process of implementing an if statement. We will illus
trate the steps with the following example problem.

Problem Statement  The university bookstore has a Kilobyte Day sale every October 24,
giving an 8 percent discount on all computer accessory purchases if the price is less than $128,
and a 16 percent discount if the price is at least $128. Write a program that asks the cashier for
the original price and then prints the discounted price.

© MikePanic/iStockphoto.
Sales discounts are often higher for
expensive products. Use the if statement
to implement such a decision.

©
 M

ik
eP

an
ic

/iS
to

ck
ph

ot
o.

5.2  Comparing Values   191

In our example, the condition tested whether the price was less than $128. If that condition
is not true, the price is at least $128, so the higher discount of 16 percent applies to the sale:

discounted price = 0.84 x original price

Step 4	 Double-check relational operators.

First, be sure that the test goes in the right direction. It is a common error to confuse > and <.
Next, consider whether you should use the < operator or its close cousin, the <= operator.

What should happen if the original price is exactly $128? Reading the problem carefully, we
find that the lower discount applies if the original price is less than $128, and the higher dis-
count applies when it is at least $128. A price of $128 should therefore not fulfill our condition,
and we must use <, not <=.

Step 5	 Remove duplication.

Check which actions are common to both branches, and move them outside. (See Program-
ming Tip 5.4 on page 183.)

In our example, we have two statements of the form

discounted price = ___ x original price
They only differ in the discount rate. It is best to just set the rate in the branches, and to do the
computation afterwards:

If original price < 128
	 discount rate = 0.92
Else
	 discount rate = 0.84
discounted price = discount rate x original price

Step 6	 Test both branches.

Formulate two test cases, one that fulfills the condition of the if statement, and one that does
not. Ask yourself what should happen in each case. Then follow the pseudocode and act each
of them out.

In our example, let us consider two scenarios for the original price: $100 and $200. We
expect that the first price is discounted by $8, the second by $32.

When the original price is 100, then the condition 100 < 128 is true, and we get

discount rate = 0.92
discounted price = 0.92 x 100 = 92

When the original price is 200, then the condition 200 < 128 is false, and

discount rate = 0.84
discounted price = 0.84 x 200 = 168

In both cases, we get the expected answer.

Step 7	 Assemble the if statement in Java.

Type the skeleton

if ()
{
}
else
{
}

and fill it in, as shown in Syntax 5.1 on page 180. Omit the else branch if it is not needed.

192  Chapter 5  Decisions

In our example, the completed statement is

if (originalPrice < 128)
{
 discountRate = 0.92;
}
else
{
 discountRate = 0.84;
}

discountedPrice = discountRate * originalPrice;

Computing & Society 5.1  Denver’s Luggage Handling System

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download the
complete program
for calculating a
discounted price.

© Alex Slobodkin/iStockphoto.

© Tom Horyn/iStockphoto.

Worked Example 5.1	 Extracting the Middle

Learn how to extract the middle character from a string, or the two middle
characters if the length of the string is even. Go to www.wiley.com/go/
bjeo6examples and download Worked Example 5.1.

0 1 2 3 4

c r a t e© Alex Slobodkin/iStockphoto.

Making decisions is
an essential part of

any computer program. Nowhere is
this more obvious than in a computer
system that helps sort luggage at an
airport. After scanning the luggage
identification codes, the system sorts
the items and routes them to different
conveyor belts. Human operators then
place the items onto trucks. When the
city of Denver built a huge airport to
replace an outdated and congested
facility, the luggage system contractor
went a step further. The new system
was designed to replace the human
operators with robotic carts. Unfortu­
nately, the system plainly did not work.
It was plagued by mechanical prob­
lems, such as luggage falling onto the
tracks and jamming carts. Equally frus­
trating were the software glitches.
Carts would uselessly accumulate at
some locations when they were needed
elsewhere.

The airport had been scheduled
to open in 1993, but without a func­
tioning luggage system, the opening
was delayed for over a year while the
contractor tried to fix the problems.

The contractor never succeeded,
and ultimately a manual system was
installed. The delay cost the city and
airlines close to a billion dollars, and
the contractor, once the leading lug­
gage systems vendor in the United
States, went bankrupt.

Clearly, it is very risky to build a
large system based on a technology
that has never been tried on a smaller
scale. In 2013, the rollout of universal
healthcare in the United States was put
in jeopardy by a dysfunctional web
site for selecting insurance plans. The
system promised an insurance shop­
ping experience similar to booking
airline flights. But, the HealthCare.gov
site didn’t simply present the available
insurance plans. It also had to check
the income level of each applicant and
use that information to determine the
subsidy level. That task turned out to
be quite a bit harder than checking
whether a credit card had sufficient
credit to pay for an airline ticket. The
Obama administration would have
been well advised to design a signup
process that did not rely on an untested
computer program.

Lyn Alweis/The Denver Post via / Getty Images, Inc.The Denver airport originally had a
fully automatic system for moving lug­
gage, replacing human operators with
robotic carts. Unfortunately, the sys­
tem never worked and was dismantled
before the airport was opened.

© Media Bakery.

L
yn

 A
lw

ei
s/

T
he

 D
en

ve
r

Po
st

 v
ia

 /
G

et
ty

 I
m

ag
es

, I
nc

.

5.3  Multiple Alternatives   193

5.3  Multiple Alternatives
In Section 5.1, you saw how to program a two-way branch with an if statement. In
many situations, there are more than two cases. In this section, you will see how to
implement a decision with multiple alternatives.

For example, consider a program that displays the effect of an earthquake, as mea-
sured by the Richter scale (see Table 3).

Table 3 Richter Scale

Value Effect

8 Most structures fall

7 Many buildings destroyed

6 Many buildings considerably
damaged, some collapse

4.5 Damage to poorly constructed
buildings

The Richter scale is a measurement of the strength of an earthquake. Every step in
the scale, for example from 6.0 to 7.0, signifies a tenfold increase in the strength of the
quake.

In this case, there are five branches: one each for the four descriptions of damage,
and one for no destruction. Figure 4 shows the flowchart for this multiple-branch
statement.

You use multiple if statements to implement multiple alternatives, like this:
if (richter >= 8.0)
{
 description = "Most structures fall";
}
else if (richter >= 7.0)
{
 description = "Many buildings destroyed";
}
else if (richter >= 6.0)
{
 description = "Many buildings considerably damaged, some collapse";
}
else if (richter >= 4.5)
{
 description = "Damage to poorly constructed buildings";
}
else
{
 description = "No destruction of buildings";
}

As soon as one of the four tests succeeds, the effect is displayed, and no further tests
are attempted. If none of the four cases applies, the final else clause applies, and a
default message is printed.

Multiple if
statements can be
combined to evaluate
complex decisions.

The 1989 Loma Prieta
earthquake that
damaged the Bay
Bridge in San Francisco
and destroyed many
buildings measured 7.1
on the Richter scale.

© kevinruss/iStockphoto.

©
 k

ev
in

ru
ss

/iS
to

ck
ph

ot
o.

194  Chapter 5  Decisions

Figure 4 
Multiple Alternatives

richter ≥ 8.0?

richter ≥ 7.0?

richter ≥ 6.0?

richter ≥ 4.5?

No destruction
of buildings

False

False

False

False

True

True

True

True

Most
structures

fall

Many
buildings
destroyed

Many buildings
considerably

damaged,
some collapse

Damage to
poorly constructed

buildings

Here you must sort the conditions and test against the largest cutoff first.
Suppose we reverse the order of tests:

if (richter >= 4.5) // Tests in wrong order
{
 description = "Damage to poorly constructed buildings";
}
else if (richter >= 6.0)
{
 description = "Many buildings considerably damaged, some collapse";
}
else if (richter >= 7.0)
{
 description = "Many buildings destroyed";
}
else if (richter >= 8.0)
{
 description = "Most structures fall";
}

5.3  Multiple Alternatives   195

This does not work. Suppose the value of richter is 7.1. That value is at least 4.5,
matching the first case. The other tests will never be attempted.

The remedy is to test the more specific conditions first. Here, the condition
richter >= 8.0 is more specific than the condition richter >= 7.0, and the condition
richter >= 4.5 is more general (that is, fulfilled by more values) than either of the
first two.

In this example, it is also important that we use an if/else  if/else sequence, not
just multiple independent if statements. Consider this sequence of independent tests.

if (richter >= 8.0) // Didn’t use else
{
 description = "Most structures fall";
}
if (richter >= 7.0)
{
 description = "Many buildings destroyed";
}
if (richter >= 6.0)
{
 description = "Many buildings considerably damaged, some collapse";
}
if (richter >= 4.5)
{
 "Damage to poorly constructed buildings";
}

Now the alternatives are no longer exclusive. If richter is 7.1, then the last three tests
all match. The description variable is set to three different strings, ending up with the
wrong one.

13.	 In a game program, the scores of players A and B are stored in variables scoreA
and scoreB. Assuming that the player with the larger score wins, write an if/
else if/else sequence that prints out "A won", "B won", or "Game tied".

14.	 Write a conditional statement with three branches that sets s to 1 if x is positive,
to –1 if x is negative, and to 0 if x is zero.

15.	 How could you achieve the task of Self Check 14 with only two branches?
16.	 Beginners sometimes write statements such as the following:

if (price > 100)
{
 discountedPrice = price - 20;
}
else if (price <= 100)
{
 discountedPrice = price - 10;
}

Explain how this code can be improved.
17.	 Suppose the user enters -1 into the earthquake program. What is printed?
18.	 Suppose we want to have the earthquake program check whether the user

entered a negative number. What branch would you add to the if statement,
and where?

Practice It	 Now you can try these exercises at the end of the chapter: R5.23, E5.11, E5.24.

When using multiple
if statements, test
general conditions
after more specific
conditions.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load the program for
printing earthquake
descriptions.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

196  Chapter 5  Decisions

The switch Statement

An if/else if/else sequence that compares a value against several alternatives can be imple
mented as a switch statement. For example,

int digit = . . .;
switch (digit)
{
 case 1: digitName = "one"; break;
 case 2: digitName = "two"; break;
 case 3: digitName = "three"; break;
 case 4: digitName = "four"; break;
 case 5: digitName = "five"; break;
 case 6: digitName = "six"; break;
 case 7: digitName = "seven"; break;
 case 8: digitName = "eight"; break;
 case 9: digitName = "nine"; break;
 default: digitName = ""; break;
}

This is a shortcut for

int digit = . . .;
if (digit == 1) { digitName = "one"; }
else if (digit == 2) { digitName = "two"; }
else if (digit == 3) { digitName = "three"; }
else if (digit == 4) { digitName = "four"; }
else if (digit == 5) { digitName = "five"; }
else if (digit == 6) { digitName = "six"; }
else if (digit == 7) { digitName = "seven"; }
else if (digit == 8) { digitName = "eight"; }
else if (digit == 9) { digitName = "nine"; }
else { digitName = ""; }

It isn’t much of a shortcut, but it has one advantage—it is obvious that all branches test the
same value, namely digit.

The switch statement can be applied only in narrow circumstances. The values in the case
clauses must be constants. They can be integers or characters. As of Java 7, strings are permit-
ted as well. You cannot use a switch statement to branch on floating-point values.

Every branch of the switch should be terminated by a break instruction. If the break is miss
ing, execution falls through to the next branch, and so on, until a break or the end of the switch
is reached. In practice, this fall-through behavior is rarely useful, but it is a common cause
of errors. If you accidentally forget a break statement, your program compiles but executes
unwanted code. Many programmers consider the switch statement somewhat dangerous and
prefer the if statement.

We leave it to you to use the switch statement for your own code or not. At any rate, you
need to have a reading knowledge of switch in case you find it in other programmers’ code.

5.4  Nested Branches
It is often necessary to include an if statement inside another. Such an arrangement is
called a nested set of statements.

Here is a typical example: In the United States, different tax rates are used depend-
ing on the taxpayer’s marital status. There are different tax schedules for single and
for married taxpayers. Married taxpayers add their income together and pay taxes on
the total. Table 4 gives the tax rate computations, using a simplification of the

Special Topic 5.2

© Eric Isselé/iStockphoto.

© travelpixpro/iStockphoto.
The switch statement lets you choose
from a fixed set of alternatives.

When a decision
statement is
contained inside the
branch of another
decision statement,
the statements
are nested.

©
 tr

av
el

pi
xp

ro
/iS

to
ck

ph
ot

o.

5.4  Nested Branches   197

schedules that were in effect for the 2008 tax year. A different tax rate applies to each
“bracket”. In this schedule, the income in the first bracket is taxed at 10 percent, and
the income in the second bracket is taxed at 25 percent. The income limits for each
bracket depend on the marital status.

Table 4 Federal Tax Rate Schedule

If your status is Single and
if the taxable income is the tax is of the amount over

at most $32,000 10% $0

over $32,000 $3,200 + 25% $32,000

If your status is Married and
if the taxable income is the tax is of the amount over

at most $64,000 10% $0

over $64,000 $6,400 + 25% $64,000

Now compute the taxes due, given a marital status and an income figure. The key
point is that there are two levels of decision making. First, you must branch on the
marital status. Then, for each marital status, you must have another branch on income
level.

The two-level decision process is reflected in two levels of if statements in the pro-
gram at the end of this section. (See Figure 5 for a flowchart.) In theory, nesting can go
deeper than two levels. A three-level decision process (first by state, then by marital
status, then by income level) requires three nesting levels.

© ericsphotography/iStockphoto.

Computing income
taxes requires
multiple levels of
decisions.

Nested decisions
are required for
problems that
have two levels of
decision making.

Figure 5  Income Tax Computation

10%
bracket

25%
bracket

Single income
≤ 32,000

10%
bracket

25%
bracket

income
≤ 64,000

False

True

True

False

True

False

©
 e

ri
cs

ph
ot

og
ra

ph
y/

iS
to

ck
ph

ot
o.

198  Chapter 5  Decisions

section_4/TaxReturn.java

1 /**
2 A tax return of a taxpayer in 2008.
3 */
4 public class TaxReturn
5 {
6 public static final int SINGLE = 1;
7 public static final int MARRIED = 2;
8
9 private static final double RATE1 = 0.10;

10 private static final double RATE2 = 0.25;
11 private static final double RATE1_SINGLE_LIMIT = 32000;
12 private static final double RATE1_MARRIED_LIMIT = 64000;
13
14 private double income;
15 private int status;
16
17 /**
18 Constructs a TaxReturn object for a given income and
19 marital status.
20 @param anIncome the taxpayer income
21 @param aStatus either SINGLE or MARRIED
22 */
23 public TaxReturn(double anIncome, int aStatus)
24 {
25 income = anIncome;
26 status = aStatus;
27 }
28
29 public double getTax()
30 {
31 double tax1 = 0;
32 double tax2 = 0;
33
34 if (status == SINGLE)
35 {
36 if (income <= RATE1_SINGLE_LIMIT)
37 {
38 tax1 = RATE1 * income;
39 }
40 else
41 {
42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44 }
45 }
46 else
47 {
48 if (income <= RATE1_MARRIED_LIMIT)
49 {
50 tax1 = RATE1 * income;
51 }
52 else
53 {
54 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
55 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
56 }
57 }
58
59 return tax1 + tax2;

5.4  Nested Branches   199

60 }
61 }

section_4/TaxCalculator.java

1 import java.util.Scanner;
2
3 /**
4 This program calculates a simple tax return.
5 */
6 public class TaxCalculator
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11
12 System.out.print("Please enter your income: ");
13 double income = in.nextDouble();
14
15 System.out.print("Are you married? (Y/N) ");
16 String input = in.next();
17 int status;
18 if (input.equals("Y"))
19 {
20 status = TaxReturn.MARRIED;
21 }
22 else
23 {
24 status = TaxReturn.SINGLE;
25 }
26 TaxReturn aTaxReturn = new TaxReturn(income, status);
27 System.out.println("Tax: "
28 + aTaxReturn.getTax());
29 }
30 }

Program Run

Please enter your income: 80000
Are you married? (Y/N) Y
Tax: 10400.0

19.	 What is the amount of tax that a single taxpayer pays on an income of $32,000?
20.	 Would that amount change if the first nested if statement changed from

if (income <= RATE1_SINGLE_LIMIT)

to
if (income < RATE1_SINGLE_LIMIT)

21.	 Suppose Harry and Sally each make $40,000 per year. Would they save taxes if
they married?

22.	 How would you modify the TaxCalculator.java program in order to check that
the user entered a correct value for the marital status (i.e., Y or N)?

23.	 Some people object to higher tax rates for higher incomes, claiming that you
might end up with less money after taxes when you get a raise for working hard.
What is the flaw in this argument?

Practice It	 Now you can try these exercises at the end of the chapter: R5.10, R5.22, E5.15, E5.18.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

200  Chapter 5  Decisions

Hand-Tracing

A very useful technique for understanding whether a program
works correctly is called hand-tracing. You simulate the pro-
gram’s activity on a sheet of paper. You can use this method with
pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet of
paper is within reach. Make a column for each variable. Have the
program code ready. Use a marker, such as a paper clip, to mark
the current statement. In your mind, execute statements one at a
time. Every time the value of a variable changes, cross out the old
value and write the new value below the old one.

For example, let’s trace the getTax method with the data from
the program run above. When the TaxReturn object is constructed,
the income instance variable is set to 80,000 and status is set to
MARRIED. Then the getTax method is called. In lines 31 and 32 of
TaxReturn.java, tax1 and tax2 are initialized to 0.
29	 public double getTax()
30	 {
31	 double tax1 = 0;
32	 double tax2 = 0;
33	

Because status is not SINGLE, we move to the else
branch of the outer if statement (line 46).
34	 if (status == SINGLE)
35	 {
36	 if (income <= RATE1_SINGLE_LIMIT)
37	 {
38	 tax1 = RATE1 * income;
39	 }
40	 else
41	 {
42	 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43	 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44	 }
45	 }
46	 else
47	 {

Because income is not <= 64000, we move to the else branch of the inner if statement (line 52).
48	 if (income <= RATE1_MARRIED_LIMIT)
49	 {
50	 tax1 = RATE1 * income;
51	 }
52	 else
53	 {
54	 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
55	 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
56	 }

The values of tax1 and tax2 are updated.
53	 {
54	 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
55	 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
56	 }
57	 }

Their sum is returned and the method ends.
58	
59	 return tax1 + tax2;
60	 }

Because the program trace shows the expected
return value ($10,400), it successfully demon-
strates that this test case works correctly.

Programming Tip 5.5

© Eric Isselé/iStockphoto.

© thomasd007/iStockphoto.
Hand-tracing helps you
understand whether a
program works correctly.

 income status tax1 tax2
 80000 MARRIED 0 0

 income status tax1 tax2
 80000 MARRIED 0 0
 6400 4000

 return
 income status tax1 tax2 value
 80000 MARRIED 0 0
 6400 4000 10400

©
 th

om
as

d0
07

/iS
to

ck
ph

ot
o.

5.4  Nested Branches   201

The Dangling else Problem

When an if statement is nested inside another if statement, the following error may occur.

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
 if (state.equals("HI"))
 shippingCharge = 10.00; // Hawaii is more expensive
else // Pitfall!
 shippingCharge = 20.00; // As are foreign shipments

The indentation level seems to suggest that the else is grouped with the test country.
equals("USA"). Unfortunately, that is not the case. The compiler ignores all indentation and
matches the else with the preceding if. That is, the code is actually

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
 if (state.equals("HI"))
 shippingCharge = 10.00; // Hawaii is more expensive
 else // Pitfall!
 shippingCharge = 20.00; // As are foreign shipments

That isn’t what you want. You want to group the else with the first if.
The ambiguous else is called a dangling else. You can avoid this pitfall if you always use

braces, as recommended in Programming Tip 5.2 on page 181:

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
{
 if (state.equals("HI"))
 {
 shippingCharge = 10.00; // Hawaii is more expensive
 }
}
else
{
 shippingCharge = 20.00; // As are foreign shipments
}

Block Scope

A block is a sequence of statements that is enclosed in braces. For example, consider this
statement:

if (status == TAXABLE)
{
 double tax = price * TAX_RATE;
 price = price + tax;
}

The highlighted part is a block. You can declare a variable in a block, such as the tax variable in
this example. Such a variable is only visible inside the block.

{
 double tax = price * TAX_RATE; // Variable declared inside a block
 price = price + tax;
}
// You can no longer access the tax variable here

Common Error 5.3

© John Bell/iStockphoto.

Special Topic 5.3

© Eric Isselé/iStockphoto.

202  Chapter 5  Decisions

In fact, the variable is only created after the program enters the block, and it is removed as soon
as the program exits the block. Such a variable is said to have block scope. In general, the scope
of a variable is the part of the program in which the variable can be accessed. A variable with
block scope is visible only inside a block.

It is considered good design to minimize the scope of a variable. This reduces the possibil-
ity of accidental modification and name conflicts. For example, as long as the tax variable is not
needed outside the block, it is a good idea to declare it inside the block. However, if you need
the variable outside the block, you must define it outside. For example,

double tax = 0;
if (status == TAXABLE)
{
 tax = price * TAX_RATE;
}
price = price + tax;

Here, the tax variable is used outside the block of the if statement, and you must declare it
outside.

In Java, the scope of a local variable can never contain the declaration of another local vari-
able with the same name. For example, the following is an error:

double tax = 0;
if (status == TAXABLE)
{
 double tax = price * TAX_RATE;
 // Error: Cannot declare another variable with the same name
 price = price + tax;
}

However, you can have local variables with identical names if their scopes do not overlap, such
as

if (Math.random() > 0.5)
{
 Rectangle r = new Rectangle(5, 10, 20, 30);
 . . .
} // Scope of r ends here
else
{
 int r = 5;
 // OK—it is legal to declare another r here
 . . .
}

These variables are independent from each other. You can have local variables with the same
name, as long as their scopes don’t overlap.

In the same way that there can be a street named “Main Street” in different cities,
a Java program can have multiple variables with the same name.

© jchamp/iStockphoto (Railway and Main); © StevenCarrieJohnson/iStockphoto (Main and N. Putnam); © jsmith/iStockphoto (Main and South St.).(left) © jchamp/iStockphoto; (middle) © StevenCarrieJohnson/iStockphoto; (right) © jsmith/iStockphoto.

5.5  Problem Solving: Flowcharts   203

Enumeration Types

In many programs, you use variables that can hold one of a finite number of values. For exam-
ple, in the tax return class, the status instance variable holds one of the values SINGLE or MARRIED.
We arbitrarily declared SINGLE as the number 1 and MARRIED as 2. If, due to some programming
error, the status variable is set to another integer value (such as -1, 0, or 3), then the program-
ming logic may produce invalid results.

In a simple program, this is not really a problem. But as programs grow over time, and more
cases are added (such as the “married filing separately” status), errors can slip in. Enumera-
tion types provide a remedy. An enumeration type has a finite set of values, for example

public enum FilingStatus { SINGLE, MARRIED, MARRIED_FILING_SEPARATELY }

You can have any number of values, but you must include them all in the enum declaration.
You can declare variables of the enumeration type:

FilingStatus status = FilingStatus.SINGLE;

If you try to assign a value that isn’t a FilingStatus, such as 2 or "S", then the compiler reports
an error.

Use the == operator to compare enumeration values, for example:

if (status == FilingStatus.SINGLE) . . .

Place the enum declaration inside the class that implements your program, such as

public class TaxReturn
{
 public enum FilingStatus { SINGLE, MARRIED, MARRIED_FILING_SEPARATELY }
 . . .
}

5.5  Problem Solving: Flowcharts
You have seen examples of flowcharts earlier in this chapter. A flowchart shows the
structure of decisions and tasks that are required to solve a problem. When you have
to solve a complex problem, it can help to draw a flowchart to visualize the flow of
control.

The basic flowchart elements are shown in Figure 6.

The basic idea is simple enough. Link tasks and input/output boxes in the sequence
in which they should be executed. Whenever you need to make a decision, draw a
diamond with two outcomes (see Figure 7).

Special Topic 5.4

© Eric Isselé/iStockphoto.

Flow charts are made
up of elements for
tasks, input/output,
and decisions.

Figure 6 
Flowchart Elements

True

False

ConditionSimple task Input/output

204  Chapter 5  Decisions

Figure 7 
Flowchart with Two Outcomes

True

False

False branch True branch

Condition

Each branch can contain a
sequence of tasks and even addi-
tional decisions. If there are mul-
tiple choices for a value, lay them
out as in Figure 8.

There is one issue that you need
to be aware of when drawing flowcharts. Unconstrained branching and merging can
lead to “spaghetti code”, a messy network of possible pathways through a program.

There is a simple rule for avoiding spaghetti code: Never point an arrow inside
another branch.

To understand the rule, consider this example: Shipping costs are $5 inside the
United States, except that to Hawaii and Alaska they are $10. International shipping
costs are also $10.You might start out with a flowchart like the following:

False

True

Shipping
cost = $10

Inside US?

True

False

Continental US? Shipping
cost = $5

Each branch of a
decision can contain
tasks and further
decisions.

Figure 8 
Flowchart with Multiple Choices

True

False

Choice 1
“Choice 1”

branch

True

False

Choice 2
“Choice 2”

branch

True

False

Choice 3
“Choice 3”

branch

“Other”
branch

Never point an
arrow inside
another branch.

5.5  Problem Solving: Flowcharts   205

Now you may be tempted to reuse the “shipping cost = $10” task:

False

True

Shipping
cost = $10

Inside US?

True

False

Continental US? Shipping
cost = $5

Don’t do that! The red arrow points inside a different branch. Instead, add another
task that sets the shipping cost to $10, like this:

False

True

Shipping
cost = $10

Inside US?

True

False

Continental US?

Shipping
cost = $10

Shipping
cost = $5

Not only do you avoid spaghetti code, but it is also a better design. In the future it
may well happen that the cost for international shipments is different from that to
Alaska and Hawaii.

Flowcharts can be very useful for getting an intuitive understanding of the flow of
an algorithm. However, they get large rather quickly when you add more details. At
that point, it makes sense to switch from flowcharts to pseudocode.

Spaghetti code has so many pathways that
it becomes impossible to understand.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a program
that computes
shipping costs.

© Alex Slobodkin/iStockphoto.

© Ekspansio/iStockphoto.

©
 E

ks
pa

ns
io

/iS
to

ck
ph

ot
o.

206  Chapter 5  Decisions	 Testing Track

24.	 Draw a flowchart for a program that reads a value temp and prints “Frozen” if it
is less than zero.

25.	 What is wrong with the flowchart at right?
26.	 How do you fix the flowchart of

Self Check 25?
27.	 Draw a flowchart for a program that reads a

value x. If it is less than zero, print “Error”.
Otherwise, print its square root.

28.	 Draw a flowchart for a program that reads
a value temp. If it is less than zero, print
“Ice”. If it is greater than 100, print “Steam”.
Otherwise, print “Liquid”.

Practice It	 Now you can try these exercises at the end of the
chapter: R5.13, R5.14, R5.15.

5.6  Problem Solving: Selecting Test Cases
Testing the functionality of a program without consideration of its internal structure
is called black-box testing. This is an important part of testing, because, after all, the
users of a program do not know its internal structure. If a program works perfectly
on all inputs, then it surely does its job.

However, it is impossible to ensure absolutely that a program will work correctly
on all inputs just by supplying a finite number of test cases. As the famous computer
scientist Edsger Dijkstra pointed out, testing can show only the presence of bugs—
not their absence. To gain more confidence in the correctness of a program, it is useful
to consider its internal structure. Testing strategies that look inside a program are
called white-box testing. Performing unit tests of each method is a part of white-box
testing.

You want to make sure that each part of your program is exercised at least once by
one of your test cases. This is called code coverage. If some code is never executed
by any of your test cases, you have no way of knowing whether that code would
perform correctly if it ever were executed by user input. That means that you need
to look at every if/else branch to see that each of them is reached by some test case.
Many conditional branches are in the code only to take care of strange and abnor-
mal inputs, but they still do something. It is a common phenomenon that they end
up doing something incorrectly, but those faults are never discovered during testing,
because nobody supplied the strange and abnormal inputs. The remedy is to ensure
that each part of the code is covered by some test case.

For example, in testing the getTax method of the TaxReturn class, you want to make
sure that every if statement is entered for at least one test case. You should test both
single and married taxpayers, with incomes in each of the three tax brackets.

When you select test cases, you should make it a habit to include boundary test
cases: legal values that lie at the boundary of the set of acceptable inputs.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

True

False

Input < 0?

True

False

Input > 100?

Status = “OK” Status = “Error”

Black-box testing
describes a testing
method that does not
take the structure of
the implementation
into account.

White-box testing
uses information
about the structure
of a program.

Code coverage is a
measure of how
many parts of a
program have
been tested.

Testing Track 5.6  Problem Solving: Selecting Test Cases   207

Here is a plan for obtaining a comprehensive set of test cases for the tax program:

•	 There are two possibilities for the marital status and two tax brackets for each
status, yielding four test cases.

•	 Test a handful of boundary conditions, such as an income that is at the boundary
between two brackets, and a zero income.

•	 If you are responsible for error checking (which is discussed in Section 5.8), also
test an invalid input, such as a negative income.

Make a list of the test cases and the expected outputs:

Test Case Married Expected Output Comment

 30,000 N 3,000 10% bracket

 72,000 N 13,200 3,200 + 25% of 40,000

 50,000 Y 5,000 10% bracket

104,000 Y 16,400 6,400 + 25% of 40,000

 32,000 N 3,200 boundary case

 0 0 boundary case

When you develop a set of test cases, it is helpful to have a flowchart of your program
(see Section 5.5). Check off each branch that has a test case. Include test cases for the
boundary cases of each decision. For example, if a decision checks whether an input is
less than 100, test with an input of 100.

It is always a good idea to design test cases before starting to code. Working
through the test cases gives you a better understanding of the algorithm that you are
about to implement.

29.	 Using Figure 1 on page 179 as a guide, follow the process described in this
section to design a set of test cases for the ElevatorSimulation.java program in
Section 5.1.

30.	 What is a boundary test case for the algorithm in How To 5.1 on page 190?
What is the expected output?

31.	 Using Figure 4 on page 194 as a guide, follow the process described in Section
5.6 to design a set of test cases for the Earthquake.java program in Section 5.3.

32.	 Suppose you are designing a part of a program for a
medical robot that has a sensor returning an x- and
y-location (measured in cm). You need to check
whether the sensor location is inside the circle, out-
side the circle, or on the boundary (specifically,
having a distance of less than 1 mm from the bound-
ary). Assume the circle has center (0, 0) and a radius of
2 cm. Give a set of test cases.

Practice It	 Now you can try these exercises at the end of the chapter: R5.16, R5.17.

Boundary test cases
are test cases that are
at the boundary of
acceptable inputs.

It is a good idea to
design test cases
before implementing
a program.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

2 cm

(0, 0)

208  Chapter 5  Decisions	 Testing Track

Make a Schedule and Make Time for Unexpected Problems

Commercial software is notorious for being delivered later than promised. For example,
Microsoft originally promised that its Windows Vista operating system would be available late
in 2003, then in 2005, then in March 2006; it finally was released in January 2007. Some of the
early promises might not have been realistic. It was in Microsoft’s interest to let prospective
customers expect the imminent availability of the product. Had customers known the actual
delivery date, they might have switched to a different product in the meantime. Undeniably,
though, Microsoft had not anticipated the full complexity of the tasks it had set itself to solve.

Microsoft can delay the delivery of its product, but it is likely that you cannot. As a student
or a programmer, you are expected to manage your time wisely and to finish your assignments
on time. You can probably do simple programming exercises the night before the due date,
but an assignment that looks twice as hard may well take four times as long, because more
things can go wrong. You should therefore make a schedule whenever you start a program-
ming project.

First, estimate realistically how much time it
will take you to:
•	 Design the program logic.
•	 Develop test cases.
•	 Type the program in and fix syntax errors.
•	 Test and debug the program.
For example, for the income tax program I might
estimate an hour for the design; 30 minutes for
developing test cases; an hour for data entry and
fixing syntax errors; and an hour for testing and
debugging. That is a total of 3.5 hours. If I work
two hours a day on this project, it will take me
almost two days.

Then think of things that can go wrong. Your computer might break down. You might be
stumped by a problem with the computer system. (That is a particularly important concern
for beginners. It is very common to lose a day over a trivial problem just because it takes time
to track down a person who knows the magic command to overcome it.) As a rule of thumb,
double the time of your estimate. That is, you should start four days, not two days, before the
due date. If nothing went wrong, great; you have the program done two days early. When the
inevitable problem occurs, you have a cushion of time that protects you from embarrassment
and failure.

Logging

Sometimes you run a program and you are not sure where it spends its time. To get a printout
of the program flow, you can insert trace messages into the program, such as this one:

if (status == SINGLE)
{
 System.out.println("status is SINGLE");
 . . .
}

However, there is a problem with using System.out.println for trace messages. When you are
done testing the program, you need to remove all print statements that produce trace mes-
sages. If you find another error, however, you need to stick the print statements back in.

Programming Tip 5.6

© Eric Isselé/iStockphoto.

Bananastock/Media Bakery.
Make a schedule for your programming
work and build in time for problems.

Special Topic 5.5

© Eric Isselé/iStockphoto.

B
an

an
as

to
ck

/M
ed

ia
 B

ak
er

y.

5.7  Boolean Variables and Operators   209

To overcome this problem, you should use the Logger class, which allows you to turn off the
trace messages without removing them from the program.

Instead of printing directly to System.out, use the global logger object that is returned
by the call Logger.getGlobal(). (Prior to Java 7, you obtained the global logger as
Logger.getLogger("global").) Then call the info method:

Logger.getGlobal().info("status is SINGLE");

By default, the message is printed. But if you call

Logger.getGlobal().setLevel(Level.OFF);

at the beginning of the main method of your program, all log message printing is suppressed.
Set the level to Level.INFO to turn logging of info messages on again. Thus, you can turn off
the log messages when your program works fine, and you can turn them back on if you find
another error. In other words, using Logger.getGlobal().info is just like System.out.println,
except that you can easily activate and deactivate the logging.

The Logger class has many other options for industrial-strength logging. Check out the API
documentation if you want to have more control over logging.

5.7  Boolean Variables and Operators
Sometimes, you need to evaluate a logical condition in one part of a program and use
it elsewhere. To store a condition that can be true or false, you use a Boolean variable.
Boolean variables are named after the mathematician George Boole (1815–1864), a
pioneer in the study of logic.

In Java, the boolean data type has exactly two values, denoted false and true. These
values are not strings or integers; they are special values, just for Boolean variables.
Here is a declaration of a Boolean variable:

boolean failed = true;

You can use the value later in your program to make a decision:
if (failed) // Only executed if failed has been set to true
{
 . . .
}

When you make complex decisions, you often need to combine Boolean values. An
operator that combines Boolean conditions is called a Boolean operator. In Java, the
&& operator (called and) yields true only when both conditions are true. The || opera-
tor (called or) yields the result true if at least one of the conditions is true.

Logging messages can be
deactivated when testing
is complete.

The Boolean type
boolean has two
values, false
and true.

Jon Patton/E+/Getty Images, Inc.

A Boolean variable
is also called a flag
because it can be
either up (true) or
down (false).

Figure 9  Boolean Truth Tables

A B A && B

true true true

true false false

false true false

false false false

A B A || B

true true true

true false true

false true true

false false false

A !A

true false

false true

Jo
n

Pa
tt

on
/E

+
/G

et
ty

 I
m

ag
es

, I
nc

.

210  Chapter 5  Decisions

At this geyser in Iceland,
you can see ice, liquid
water, and steam.

© toos/iStockphoto.

Suppose you write a program that processes temperature values, and you want to
test whether a given temperature corresponds to liquid water. (At sea level, water
freezes at 0 degrees Celsius and boils at 100 degrees.) Water is liquid if the tempera
ture is greater than zero and less than 100:

if (temp > 0 && temp < 100) { System.out.println("Liquid"); }

The condition of the test has two parts, joined by the && operator. Each part is a Bool-
ean value that can be true or false. The combined expression is true if both individual
expressions are true. If either one of the expressions is false, then the result is also false
(see Figure 9).

The Boolean operators && and || have a lower precedence than the relational opera-
tors. For that reason, you can write relational expressions on either side of the Bool-
ean operators without using parentheses. For example, in the expression

temp > 0 && temp < 100

the expressions temp > 0 and temp < 100 are evaluated first. Then the && operator com
bines the results. Appendix B shows a table of the Java operators and their
precedence.

Conversely, let’s test whether water is not liquid at a given temperature. That is the
case when the temperature is at most 0 or at least 100.

Java has two Boolean
operators that
combine conditions:
&& (and) and || (or).

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a program
that compares
numbers using
Boolean expressions.

© Alex Slobodkin/iStockphoto.

Figure 10  Flowcharts for and and or Combinations

True True True

True

False

False

False False
Temperature

> 0?

Temperature
< 100?

Water is
liquid

Water is
not liquid

Temperature
≤ 0?

Temperature
≥ 100?

Both conditions
must be true

At least
one condition
must be true

and or

©
 to

os
/iS

to
ck

ph
ot

o.

5.7  Boolean Variables and Operators   211

Table 5 Boolean Operator Examples

Expression Value Comment

0 < 200 && 200 < 100 false Only the first condition is true.

0 < 200 || 200 < 100 true The first condition is true.

0 < 200 || 100 < 200 true The || is not a test for “either-or”. If both
conditions are true, the result is true.

0 < x && x < 100 || x == -1 (0 < x && x < 100)
 || x == -1

The && operator has a higher precedence than the
|| operator (see Appendix B).

0 < x < 100 Error Error: This expression does not test whether x is
between 0 and 100. The expression 0 < x is a
Boolean value. You cannot compare a Boolean
value with the integer 100.

x && y > 0 Error Error: This expression does not test whether x and
y are positive. The left-hand side of && is an integer,
x, and the right-hand side, y > 0, is a Boolean value.
You cannot use && with an integer argument.

!(0 < 200) false 0 < 200 is true, therefore its negation is false.

frozen == true frozen There is no need to compare a Boolean variable
with true.

frozen == false !frozen It is clearer to use ! than to compare with false.

Use the || (or) operator to combine the expressions:
if (temp <= 0 || temp >= 100) { System.out.println("Not liquid"); }

Figure 10 shows flowcharts for these examples.
Sometimes you need to invert a condition with the not Boolean operator. The

! operator takes a single condition and evaluates to true if that condition is false and to
false if the condition is true. In this example, output occurs if the value of the Boolean
variable frozen is false: .

if (!frozen) { System.out.println("Not frozen"); }

Table 5 illustrates additional examples of evaluating Boolean operators.

33.	 Suppose x and y are two integers. How do you test whether both of them
are zero?

34.	 How do you test whether at least one of them is zero?
35.	 How do you test whether exactly one of them is zero?
36.	 What is the value of !!frozen?
37.	 What is the advantage of using the type boolean rather than strings "false"/"true"

or integers 0/1?

Practice It	 Now you can try these exercises at the end of the chapter: R5.30, E5.23, E5.24.

To invert a condition,
use the ! (not)
operator.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

212  Chapter 5  Decisions

Combining Multiple Relational Operators

Consider the expression

if (0 <= temp <= 100) // Error

This looks just like the mathematical test 0 ≤ temp ≤ 100. But in Java, it is a compile-time error.
Let us dissect the condition. The first half, 0 <= temp, is a test with an outcome true or false.

The outcome of that test (true or false) is then compared against 100. This seems to make no
sense. Is true larger than 100 or not? Can one compare truth values and numbers? In Java, you
cannot. The Java compiler rejects this statement.

Instead, use && to combine two separate tests:

if (0 <= temp && temp <= 100) . . .

Another common error, along the same lines, is to write

if (input == 1 || 2) . . . // Error

to test whether input is 1 or 2. Again, the Java compiler flags this construct as an error. You
cannot apply the || operator to numbers. You need to write two Boolean expressions and join
them with the || operator:

if (input == 1 || input == 2) . . .

Confusing && and || Conditions

It is a surprisingly common error to confuse and and or conditions. A value lies between 0 and
100 if it is at least 0 and at most 100. It lies outside that range if it is less than 0 or greater than
100. There is no golden rule; you just have to think carefully.

Often the and or or is clearly stated, and then it isn’t too hard to implement it. But some
times the wording isn’t as explicit. It is quite common that the individual conditions are nicely
set apart in a bulleted list, but with little indication of how they should be combined.

Consider these instructions for filing a tax return. You can claim single filing status if any
one of the following is true:

•	 You were never married.

•	 You were legally separated or divorced on the last day of the tax year.

•	 You were widowed, and did not remarry.

Because the test passes if any one of the conditions is true, you must combine the conditions
with or.

Elsewhere, the same instructions state that you may use the more advantageous status of
married filing jointly if all five of the following conditions are true:

•	 Your spouse died less than two years ago and you did not remarry.

•	 You have a child whom you can claim as dependent.

•	 That child lived in your home for all of the tax year.

•	 You paid over half the cost of keeping up your home for this child.

•	 You filed a joint return with your spouse the year he or she died.

Because all of the conditions must be true for the test to pass, you must combine them with
an and.

Common Error 5.4

© John Bell/iStockphoto.

Common Error 5.5

© John Bell/iStockphoto.

5.7  Boolean Variables and Operators   213

Short-Circuit Evaluation of Boolean Operators

The && and || operators are computed using short-circuit evaluation.
In other words, logical expressions are evaluated from left to right,
and evaluation stops as soon as the truth value is determined. When
an && is evaluated and the first condition is false, the second condition
is not evaluated, because it does not matter what the outcome of the
second test is.

For example, consider the expression

quantity > 0 && price / quantity < 10

Suppose the value of quantity is zero. Then the test quantity > 0 fails,
and the second test is not attempted. That is just as well, because it is illegal to divide by zero.

Similarly, when the first condition of an || expression is true, then the remainder is not
evaluated because the result must be true.

This process is called short-circuit evaluation.

In a short circuit, electricity travels along the path of least
resistance. Similarly, short-circuit evaluation takes the fast­
est path for computing the result of a Boolean expression.

De Morgan’s Law

Humans generally have a hard time comprehending logical conditions with not operators
applied to and/or expressions. De Morgan’s Law, named after the logician Augustus De
Morgan (1806–1871), can be used to simplify these Boolean expressions.

Suppose we want to charge a higher shipping rate if we don’t ship within the continental
United States:

if (!(country.equals("USA") && !state.equals("AK") && !state.equals("HI")))
{
 shippingCharge = 20.00;

}

This test is a little bit complicated, and you have to think carefully through the logic. When it
is not true that the country is USA and the state is not Alaska and the state is not Hawaii, then
charge $20.00. Huh? It is not true that some people won’t be confused by this code.

The computer doesn’t care, but it takes human programmers to write and maintain the
code. Therefore, it is useful to know how to simplify such a condition.

De Morgan’s Law has two forms: one for the negation of an
and expression and one for the negation of an or expression:

!(A && B) is the same as !A || !B
!(A || B) is the same as !A && !B

Pay particular attention to the fact that the and and or operators are reversed by moving the
not inward. For example, the negation of “the state is Alaska or it is Hawaii”,

!(state.equals("AK") || state.equals("HI"))

is “the state is not Alaska and it is not Hawaii”:

!state.equals("AK") && !state.equals("HI")

Special Topic 5.6

© Eric Isselé/iStockphoto.

The && and ||
operators are
computed using
short-circuit
evaluation: As soon
as the truth value is
determined, no
further conditions
are evaluated.

© YouraPechkin/iStockphoto.

Special Topic 5.7

© Eric Isselé/iStockphoto.

De Morgan’s Law tells
you how to negate &&
and || conditions.

©
 Y

ou
ra

Pe
ch

ki
n/

iS
to

ck
ph

ot
o.

214  Chapter 5  Decisions

Now apply the law to our shipping charge computation:

!(country.equals("USA")
 && !state.equals("AK")
 && !state.equals("HI"))

is equivalent to

!country.equals("USA")
 || !!state.equals("AK")
 || !!state.equals("HI"))

Because two ! cancel each other out, the result is the simpler test

!country.equals("USA")
 || state.equals("AK")
 || state.equals("HI")

In other words, higher shipping charges apply when the destination is outside the United
States or in Alaska or Hawaii.

To simplify conditions with negations of and or or expressions, it is usually a good idea to
apply De Morgan’s Law to move the negations to the innermost level.

5.8  Application: Input Validation
An important application for the if statement is input validation. Whenever
your program accepts user input, you need to make sure that the user-supplied
values are valid before you use them in your computations.

Consider our elevator simulation program. Assume that the elevator panel
has buttons labeled 1 through 20 (but not 13). The following are illegal inputs:

•	 The number 13
•	 Zero or a negative number
•	 A number larger than 20
•	 An input that is not a sequence of digits, such as five

In each of these cases, we want to give an error message and exit the program.
It is simple to guard against an input of 13:

if (floor == 13)
{
 System.out.println("Error: There is no thirteenth floor.");
}

Here is how you ensure that the user doesn’t enter a number outside the valid range:
if (floor <= 0 || floor > 20)
{
 System.out.println("Error: The floor must be between 1 and 20.");
}

However, dealing with an input that is not a valid integer is a more serious problem.
When the statement

floor = in.nextInt();

is executed, and the user types in an input that is not an integer (such as five), then
the integer variable floor is not set. Instead, a run-time exception occurs and the pro-
gram is terminated. To avoid this problem, you should first call the hasNextInt method

Tetra Images/Media Bakery.
Like a quality control worker,
you want to make sure that
user input is correct before
processing it.

Te
tr

a
Im

ag
es

/M
ed

ia
 B

ak
er

y.

5.8  Application: Input Validation   215

which checks whether the next input is an integer. If that method returns true, you
can safely call nextInt. Otherwise, print an error message and exit the program:

if (in.hasNextInt())
{
 int floor = in.nextInt();
 Process the input value.
}
else
{
 System.out.println("Error: Not an integer.");
}

Here is the complete elevator simulation program with input validation:

section_8/ElevatorSimulation2.java

1 import java.util.Scanner;
2
3 /**
4 This program simulates an elevator panel that skips the 13th floor, checking for
5 input errors.
6 */
7 public class ElevatorSimulation2
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Floor: ");
13 if (in.hasNextInt())
14 {
15 // Now we know that the user entered an integer
16
17 int floor = in.nextInt();
18
19 if (floor == 13)
20 {
21 System.out.println("Error: There is no thirteenth floor.");
22 }
23 else if (floor <= 0 || floor > 20)
24 {
25 System.out.println("Error: The floor must be between 1 and 20.");
26 }
27 else
28 {
29 // Now we know that the input is valid
30
31 int actualFloor = floor;
32 if (floor > 13)
33 {
34 actualFloor = floor - 1;
35 }
36
37 System.out.println("The elevator will travel to the actual floor "
38 + actualFloor);
39 }
40 }
41 else
42 {
43 System.out.println("Error: Not an integer.");
44 }

Call the hasNextInt or
hasNextDouble
method to ensure
that the next input is
a number.

216  Chapter 5  Decisions

45 }
46 }

Program Run

Floor: 13
Error: There is no thirteenth floor.

38.	 In the ElevatorSimulation2 program, what is the output when the input is
a.	 100?
b.	–1?
c.	 20?
d.	thirteen?

39.	 Your task is to rewrite lines 19–26 of the ElevatorSimulation2 program so that
there is a single if statement with a complex condition. What is the condition?
if (. . .)
{
 System.out.println("Error: Invalid floor number");
}

40.	 In the Sherlock Holmes story “The Adventure of the Sussex Vampire”, the
inimitable detective uttered these words: “Matilda Briggs was not the name of
a young woman, Watson, … It was a ship which is associated with the giant rat
of Sumatra, a story for which the world is not yet prepared.” Over a hundred
years later, researchers found giant rats in Western New Guinea, another part of
Indonesia.
Suppose you are charged with writing a program that processes rat weights. It
contains the statements
System.out.print("Enter weight in kg: ");
double weight = in.nextDouble();

What input checks should you supply?

When processing inputs, you want to reject values that are too large. But how large is too large?
These giant rats, found in Western New Guinea, are about five times the size of a city rat.

41.	 Run the following test program and supply inputs 2 and three at the prompts.
What happens? Why?
import java.util.Scanner

public class Test
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter an integer: ");
 int m = in.nextInt();
 System.out.print("Enter another integer: ");
 int n = in.nextInt();
 System.out.println(m + " " + n);
 }
}

Practice It	 Now you can try these exercises at the end of the chapter: R5.3, R5.33, E5.13.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© jeanma85/iStockphoto.

©
 je

an
m

a8
5/

iS
to

ck
ph

ot
o.

Chapter Summary  217

Computing & Society 5.2  Artificial Intelligence

Use the if statement to implement a decision.

•	 The if statement allows a program to carry out
different actions depending on the nature of the
data to be processed.

When one uses a
sophisticated com

puter program such as a tax prepara
tion package, one is bound to attribute
some intelligence to the computer. The
computer asks sensible questions and
makes computations that we find a
mental challenge. After all, if doing
one’s taxes were easy, we wouldn’t
need a computer to do it for us.

As programmers, however, we
know that all this apparent intelligence
is an illusion. Human programmers
have carefully “coached” the software
in all possible scenarios, and it simply
replays the actions and decisions that
were programmed into it.

Would it be possible to write com
puter programs that are genuinely
intelligent in some sense? From the
earliest days of computing, there was
a sense that the human brain might
be nothing but an immense computer,
and that it might well be feasible to
program computers to imitate some
processes of human thought. Serious
research into artificial intelligence
began in the mid-1950s, and the first
twenty years brought some impres
sive successes. Programs that play
chess—surely an activity that appears
to require remarkable intellectual pow-
ers—have become so good that they
now routinely beat all but the best
human players. As far back as 1975,
an expert-system program called Mycin
gained fame for being better in diag-
nosing meningitis in patients than the
average physician.

From the very outset, one of the
stated goals of the AI community was
to produce software that could trans
late text from one language to another,
for example from English to Russian.
That undertaking proved to be enor-
mously complicated. Human language
appears to be much more subtle and
interwoven with the human experience
than had originally been thought. Sys-
tems such as Apple’s Siri can answer
common questions about the weather,
appointments, and traffic. However,
beyond a narrow range, they are more
entertaining than useful.

In some areas, artificial intelli-
gence technology has seen substantial
advances. One of the most astounding
examples is the outcome of a series
of “grand challenges” for autono-
mous vehicles posed by the Defense

Advanced Research Projects Agency
(DARPA). Competitors were invited to
submit a computer-controlled vehi-
cle that had to complete an obstacle
course without a human driver or
remote control. The first event, in
2004, was a disappointment, with
none of the entrants finishing the
route. In 2005, five vehicles completed
a grueling 212 km course in the Mojave
desert. Stanford’s Stanley came in first,
with an average speed of 30 km/h. In
2007, DARPA moved the competition
to an “urban” environment, an aban-
doned air force base. Vehicles had to
be able to interact with each other, fol-
lowing California traffic laws. Self-driv-
ing cars are now tested on public roads
in several states, and it is expected that
they will become commercially avail-
able within a decade.

When a system with
artificial intelligence
replaces a human in an
activity such as giving
medical advice or driv-
ing a vehicle, an impor-
tant question arises.
Who is responsible for
mistakes? We accept
that human doctors and
drivers occasionally
make mistakes with
lethal consequences.
Will we do the same for
medical expert systems
and self-driving cars?

© Media Bakery.

Vaughn Youtz/Zuma Press.Winner of the 2007 DARPA Urban Challenge

C H A P T E R S U M M A R Y

© Media Bakery.

V
au

gh
n

Y
ou

tz
/Z

um
a

P
re

ss
.

218  Chapter 5  Decisions

Implement comparisons of numbers and objects.

•	 Use relational operators (< <= > >= == !=) to compare numbers.
•	 Relational operators compare values. The = = operator tests for equality.
•	 When comparing floating-point numbers, don’t test for equality. Instead, check

whether they are close enough.
•	 Do not use the = = operator to compare strings. Use the equals method instead.
•	 The compareTo method compares strings in lexicographic order.
•	 The = = operator tests whether two object references are

identical. To compare the contents of objects, you need to
use the equals method.

•	 The null reference refers to no object.

Implement complex decisions that require multiple if statements.

•	 Multiple if statements can be combined to evaluate complex decisions.
•	 When using multiple if statements, test general conditions after more specific

conditions.

Implement decisions whose branches require further decisions.

•	 When a decision statement is contained inside the branch of another decision
statement, the statements are nested.

•	 Nested decisions are required for problems that have two levels of
decision making.

Draw flowcharts for visualizing the control flow of a program.

•	 Flow charts are made up of elements for tasks,
input/output, and decisions.

•	 Each branch of a decision can contain tasks and
further decisions.

•	 Never point an arrow inside another branch.

Design test cases for your programs.

•	 Black-box testing describes a testing method that does not take the structure of
the implementation into account.

•	 White-box testing uses information about the structure of a program.
•	 Code coverage is a measure of how many parts of a program have been tested.
•	 Boundary test cases are test cases that are at the boundary of acceptable inputs.
•	 It is a good idea to design test cases before implementing a program.
•	 Logging messages can be deactivated when testing is complete.

© arturbo/iStockphoto.

Corbis Digital Stock.

© kevinruss/iStockphoto.

© ericsphotography/iStockphoto.

True

False

Condition

Review Exercises  219

Use the Boolean data type to store and combine conditions that can be true or false.

•	 The Boolean type boolean has two values, false and true.
•	 Java has two Boolean operators that combine conditions: && (and) and || (or).
•	 To invert a condition, use the ! (not) operator.
•	 The && and || operators are computed using short-circuit evaluation: As soon as

the truth value is determined, no further conditions are evaluated.
•	 De Morgan’s Law tells you how to negate && and || conditions.

Apply if statements to detect whether user input is valid.

•	 Call the hasNextInt or hasNextDouble method to ensure that the
next input is a number.

• R5.1	 What is the value of each variable after the if statement?
a.	int n = 1; int k = 2; int r = n;

if (k < n) { r = k; }

b.	int n = 1; int k = 2; int r;
if (n < k) { r = k; }
else { r = k + n; }

c.	int n = 1; int k = 2; int r = k;
if (r < k) { n = r; }
else { k = n; }

d.	int n = 1; int k = 2; int r = 3;
if (r < n + k) { r = 2 * n; }
else { k = 2 * r; }

•• R5.2	 Explain the difference between
s = 0;
if (x > 0) { s++; }
if (y > 0) { s++; }

and
s = 0;
if (x > 0) { s++; }
else if (y > 0) { s++; }

Cusp/SuperStock.

Tetra Images/Media Bakery.java.awt.Rectangle
 equals
java.lang.String
 equals
 compareTo
java.util.Scanner
 hasNextDouble
 hasNextInt

java.util.logging.Level
 INFO
 OFF
java.util.logging.Logger
 getGlobal
 info
 setLevel

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

R E V I E W E X E R C I S E S

220  Chapter 5  Decisions

•• R5.3	 Find the errors in the following if statements.
a.	if x > 0 then System.out.print(x);
b.	if (1 + x > Math.pow(x, Math.sqrt(2)) { y = y + x; }
c.	if (x = 1) { y++; }
d.	x = in.nextInt();

if (in.hasNextInt())
{
 sum = sum + x;

 }
else
{
 System.out.println("Bad input for x");
}

e.	String letterGrade = "F";
if (grade >= 90) { letterGrade = "A"; }
if (grade >= 80) { letterGrade = "B"; }
if (grade >= 70) { letterGrade = "C"; }
if (grade >= 60) { letterGrade = "D"; }

• R5.4	 What do these code fragments print?
a.	int n = 1;

int m = -1;
if (n < -m) { System.out.print(n); }
else { System.out.print(m); }

b.	int n = 1;
int m = -1;
if (-n >= m) { System.out.print(n); }
else { System.out.print(m); }

c.	double x = 0;
double y = 1;
if (Math.abs(x - y) < 1) { System.out.print(x); }
else { System.out.print(y); }

d.	double x = Math.sqrt(2);
double y = 2;
if (x * x == y) { System.out.print(x); }
else { System.out.print(y); }

•• R5.5	 Suppose x and y are variables of type double. Write a code fragment that sets y to x if x
is positive and to 0 otherwise.

•• R5.6	 Suppose x and y are variables of type double. Write a code fragment that sets y to the
absolute value of x without calling the Math.abs function. Use an if statement.

•• R5.7	 Explain why it is more difficult to compare floating-point numbers than integers.
Write Java code to test whether an integer n equals 10 and whether a floating-point
number x is approximately equal to 10.

•• R5.8	 Given two pixels on a computer screen with integer coordinates (x1, y1) and (x2, y2),
write conditions to test whether they are

a.	The same pixel.
b.	Very close together (with distance < 5).

• R5.9	 It is easy to confuse the = and == operators. Write a test program containing the
statement

if (floor = 13)

Review Exercises  221

What error message do you get? Write another test program with the statement
count == 0;

What does your compiler do when you compile the program?

•• R5.10	 Each square on a chess board can be described by a letter and number, such as g5 in
the example at right.
The following pseudocode describes an algorithm that
determines whether a square with a given letter and
number is dark (black) or light (white).

If the letter is an a, c, e, or g
	 If the number is odd
		 color = "black"
	 Else
		 color = "white"
Else
	 If the number is even
		 color = "black"
	 Else
		 color = "white"

Using the procedure in Programming Tip 5.5, trace this pseudocode with input g5.

•• Testing R5.11	 Give a set of four test cases for the algorithm of Exercise R5.10 that covers all
branches.

•• R5.12	 In a scheduling program, we want to check whether two appointments overlap. For
simplicity, appointments start at a full hour, and we use military time (with hours
0–23). The following pseudocode describes an algorithm that determines whether
the appointment with start time start1 and end time end1 overlaps with the appoint-
ment with start time start2 and end time end2.

If start1 > start2
	 s = start1
Else
	 s = start2
If end1 < end2
	 e = endl
Else
	 e = end2
If s < e
	 The appointments overlap.
Else
	 The appointments don’t overlap.

Trace this algorithm with an appointment from 10–12 and one from 11–13, then with
an appointment from 10–11 and one from 12–13.

• R5.13	 Draw a flow chart for the algorithm in Exercise R5.12.

• R5.14	 Draw a flow chart for the algorithm in Exercise E5.14.

• R5.15	 Draw a flow chart for the algorithm in Exercise E5.15.

•• Testing R5.16	 Develop a set of test cases for the algorithm in Exercise R5.12.

1
2

4

6

8

3

5

7

1
2

4

6

8

3

5

7

a

a

b

b

d

d

f

f

h

h

c

c

e

e

g5

g

g

222  Chapter 5  Decisions

•• Testing R5.17	 Develop a set of test cases for the algorithm in Exercise E5.15.

•• R5.18	 Write pseudocode for a program that prompts the user for a month and day and
prints out whether it is one of the following four holidays:

•	 New Year’s Day (January 1)
•	 Independence Day (July 4)
•	 Veterans Day (November 11)
•	 Christmas Day (December 25)

•• R5.19	 Write pseudocode for a program that assigns letter grades for a quiz, according to the
following table:

Score	 Grade
90-100	 A
80-89	 B
70-79	 C
60-69	 D
 < 60	 F

•• R5.20	 Explain how the lexicographic ordering of strings in Java differs from the order-
ing of words in a dictionary or telephone book. Hint: Consider strings such as IBM,
wiley.com, Century 21, and While-U-Wait.

•• R5.21	 Of the following pairs of strings, which comes first in lexicographic order?
a.	"Tom", "Jerry"
b.	"Tom", "Tomato"
c.	"church", "Churchill"
d.	"car manufacturer", "carburetor"
e.	"Harry", "hairy"
f.	 "Java", " Car"
g.	"Tom", "Tom"
h.	"Car", "Carl"
i.	 "car", "bar"

• R5.22	 Explain the difference between an if/else if/else sequence and nested if statements.
Give an example of each.

•• R5.23	 Give an example of an if/else if/else sequence where the order of the tests does not
matter. Give an example where the order of the tests matters.

• R5.24	 Rewrite the condition in Section 5.3 to use < operators instead of >= operators. What
is the impact on the order of the comparisons?

•• Testing R5.25	 Give a set of test cases for the tax program in Exercise P5.2. Manually compute the
expected results.

• R5.26	 Make up a Java code example that shows the dangling else problem using the follow-
ing statement: A student with a GPA of at least 1.5, but less than 2, is on probation.
With less than 1.5, the student is failing.

••• R5.27	 Complete the following truth table by finding the truth values of the Boolean
expressions for all combinations of the Boolean inputs p, q, and r.

Review Exercises  223

p q r (p && q) || !r !(p && (q || !r))

false false false

false false true

false true false

. . .

5 more combinations

. . .

••• R5.28	 True or false? A && B is the same as B && A for any Boolean conditions A and B.

• R5.29	 The “advanced search” feature of many search engines allows you to use Boolean
operators for complex queries, such as “(cats OR dogs) AND NOT pets”. Contrast
these search operators with the Boolean operators in Java.

•• R5.30	 Suppose the value of b is false and the value of x is 0. What is the value of each of the
following expressions?

a.	b && x == 0
b.	b || x == 0
c.	!b && x == 0
d.	!b || x == 0

e.	b && x != 0
f.	 b || x != 0
g.	!b && x != 0
h.	!b || x != 0

•• R5.31	 Simplify the following expressions. Here, b is a variable of type boolean.
a.	b == true
b.	b == false
c.	b != true
d.	b != false

••• R5.32	 Simplify the following statements. Here, b is a variable of type boolean and n is a vari-
able of type int.

a.	if (n == 0) { b = true; } else { b = false; }

(Hint: What is the value of n == 0?)
b.	if (n == 0) { b = false; } else { b = true; }
c.	b = false; if (n > 1) { if (n < 2) { b = true; } }
d.	if (n < 1) { b = true; } else { b = n > 2; }

• R5.33	 What is wrong with the following program?
System.out.print("Enter the number of quarters: ");
int quarters = in.nextInt();
if (in.hasNextInt())
{
 total = total + quarters * 0.25;
 System.out.println("Total: " + total);
}
else
{
 System.out.println("Input error.");
}

224  Chapter 5  Decisions

• E5.1	 Write a program that reads an integer and prints whether it is negative, zero, or
positive.

•• E5.2	 Write a program that reads a floating-point number and prints “zero” if the number
is zero. Otherwise, print “positive” or “negative”. Add “small” if the absolute value
of the number is less than 1, or “large” if it exceeds 1,000,000.

•• E5.3	 Write a program that reads an integer and prints how many digits the number has, by
checking whether the number is ≥ 10, ≥ 100, and so on. (Assume that all integers are
less than ten billion.) If the number is negative, first multiply it with –1.

•• E5.4	 Write a program that reads three numbers and prints “all the same” if they are all the
same, “all different” if they are all different, and “neither” otherwise.

•• E5.5	 Write a program that reads three numbers and prints “increasing” if they are in
increasing order, “decreasing” if they are in decreasing order, and “neither” other-
wise. Here, “increasing” means “strictly increasing”, with each value larger than its
predecessor. The sequence 3 4 4 would not be considered increasing.

•• E5.6	 Repeat Exercise E5.5, but before reading the numbers, ask the user whether increas
ing/decreasing should be “strict” or “lenient”. In lenient mode, the sequence 3 4 4 is
increasing and the sequence 4 4 4 is both increasing and decreasing.

•• E5.7	 Write a program that reads in three integers and prints “in order” if they are sorted in
ascending or descending order, or “not in order” otherwise. For example,

 1 2 5 in order
 1 5 2 not in order
 5 2 1 in order
 1 2 2 in order

•• E5.8	 Write a program that reads four integers and prints “two pairs” if the input consists
of two matching pairs (in some order) and “not two pairs” otherwise. For example,

 1 2 2 1 two pairs
 1 2 2 3 not two pairs
 2 2 2 2 two pairs

•• E5.9	 A compass needle points a given number of degrees away from North, measured
clockwise. Write a program that reads the angle and prints out the nearest compass
direction; one of N, NE, E, SE, S, SW, W, NW. In the case of a tie, prefer the nearest
principal direction (N, E, S, or W).

•• Business E5.10	 Write a program that reads in the name and salary of an employee. Here the salary
will denote an hourly wage, such as $9.25. Then ask how many hours the employee
worked in the past week. Be sure to accept fractional hours. Compute the pay. Any
overtime work (over 40 hours per week) is paid at 150 percent of the regular wage.
Print a paycheck for the employee. In your solution, implement a class Paycheck.

• E5.11	 Write a program that reads a temperature value and the letter C for Celsius or F for
Fahrenheit. Print whether water is liquid, solid, or gaseous at the given temperature
at sea level.

P R A C T I C E E X E R C I S E S

Practice Exercises  225

• E5.12	 The boiling point of water drops by about one degree centigrade for every 300
meters (or 1,000 feet) of altitude. Improve the program of Exercise E5.11 to allow
the user to supply the altitude in meters or feet.

• E5.13	 Add error handling to Exercise E5.12. If the user does not enter a number when
expected, or provides an invalid unit for the altitude, print an error message and end
the program.

•• E5.14	 When two points in time are compared, each given as hours (in military time,
ranging from 0 and 23) and minutes, the following pseudocode determines which
comes first.

If hour1 < hour2
	 time1 comes first.
Else if hour1 and hour2 are the same
	 If minute1 < minute2
		 time1 comes first.
	 Else if minute1 and minute2 are the same
		 time1 and time2 are the same.
	 Else
		 time2 comes first.
Else
	 time2 comes first.

Write a program that prompts the user for two points in time and prints the time that
comes first, then the other time. In your program, supply a class Time and a method

public int compareTo(Time other)

that returns –1 if the time comes before the other, 0 if both are the same, and 1
otherwise.

•• E5.15	 The following algorithm yields the season (Spring, Summer, Fall, or Winter) for a
given month and day.

If month is 1, 2, or 3, season = “Winter”
Else if month is 4, 5, or 6, season = “Spring”
Else if month is 7, 8, or 9, season = “Summer”
Else if month is 10, 11, or 12, season = “Fall”
If month is divisible by 3 and day >= 21
	 If season is “Winter”, season = “Spring”
	 Else if season is “Spring”, season = “Summer”
	 Else if season is “Summer”, season = “Fall”
	 Else season = “Winter”

Write a program that prompts the user for a month and day and then prints the
season, as determined by this algorithm. Use a class Date with a method getSeason.

•• E5.16	 Write a program that translates a letter grade into a number grade. Letter grades are
A, B, C, D, and F, possibly followed by + or –. Their numeric values are 4, 3, 2, 1, and
0. There is no F+ or F–. A + increases the numeric value by 0.3, a – decreases it by 0.3.
However, an A+ has value 4.0.

Enter a letter grade: B-
The numeric value is 2.7.

Use a class Grade with a method getNumericGrade.

© rotofrank/iStockphoto.
©

 r
ot

of
ra

nk
/iS

to
ck

ph
ot

o.

226  Chapter 5  Decisions

•• E5.17	 Write a program that translates a number between 0 and 4 into the closest letter
grade. For example, the number 2.8 (which might have been the average of several
grades) would be converted to B–. Break ties in favor of the better grade; for example
2.85 should be a B.
Use a class Grade with a method getNumericGrade.

•• E5.18	 The original U.S. income tax of 1913 was quite simple. The tax was

•	 1 percent on the first $50,000.

•	 2 percent on the amount over $50,000 up to $75,000.

•	 3 percent on the amount over $75,000 up to $100,000.

•	 4 percent on the amount over $100,000 up to $250,000.

•	 5 percent on the amount over $250,000 up to $500,000.

•	 6 percent on the amount over $500,000.

There was no separate schedule for single or married taxpayers. Write a program that
computes the income tax according to this schedule.

•• E5.19	 Write a program that takes user input describing a playing card in the following
shorthand notation:

A		 Ace
2 ... 10	 Card values
J		 Jack
Q		 Queen
K		 King
D		 Diamonds
H		 Hearts
S		 Spades
C		 Clubs

Your program should print the full description of the card. For example,
Enter the card notation: QS
Queen of Spades

Implement a class Card whose constructor takes the card notation string and whose
getDescription method returns a description of the card. If the notation string is not
in the correct format, the getDescription method should return the string "Unknown".

•• E5.20	 Write a program that reads in three floating-point numbers and prints the largest of
the three inputs. For example:

Please enter three numbers: 4 9 2.5
The largest number is 9.

•• E5.21	 Write a program that reads in three strings and sorts them lexicographically.
Enter three strings: Charlie Able Baker
Able
Baker
Charlie

Programming Projects  227

•• E5.22	 Write a program that reads in two floating-point numbers and tests whether they are
the same up to two decimal places. Here are two sample runs.

Enter two floating-point numbers: 2.0 1.99998
They are the same up to two decimal places.
Enter two floating-point numbers: 2.0 1.98999
They are different.

• E5.23	 Write a program that prompts the user to provide a single character from the alpha-
bet. Print Vowel or Consonant, depending on the user input. If the user input is not a
letter (between a and z or A and Z), or is a string of length > 1, print an error message.

•• E5.24	 Write a program that asks the user to enter a month (1 for January, 2 for February,
etc.) and then prints the number of days in the month. For February, print “28 days”.

Enter a month: 5
30 days

Use a class Month with a method
public int getLength()

Do not use a separate if/else branch for each month. Use Boolean operators.

• Business E5.25	 A supermarket awards coupons depending on how much a customer spends on
groceries. For example, if you spend $50, you will get a coupon worth eight percent
of that amount. The following table shows the percent used to calculate the coupon
awarded for different amounts spent. Write a program that calculates and prints the
value of the coupon a person can receive based on groceries purchased.
Here is a sample run:

Please enter the cost of your groceries: 14
You win a discount coupon of $ 1.12. (8% of your purchase)

Money Spent Coupon Percentage

Less than $10 No coupon

From $10 to $60 8%

More than $60 to $150 10%

More than $150 to $210 12%

More than $210 14%

•• P5.1	 Write a program that prompts for the day and month of the user’s birthday and then
prints a horoscope. Make up fortunes for programmers, like this:

Please enter your birthday (month and day): 6 16
Gemini are experts at figuring out the behavior of complicated programs.
You feel where bugs are coming from and then stay one step ahead. Tonight,
your style wins approval from a tough critic.

Each fortune should contain the name of the astrological sign. (You will find the
names and date ranges of the signs at a distressingly large number of sites on the
Internet.) Use a class Date with a method getFortune.

P R O G R A M M I N G P R O J E C T S

© lillisphotography/iStockphoto.

©
 li

lli
sp

ho
to

gr
ap

hy
/iS

to
ck

ph
ot

o.

228  Chapter 5  Decisions

•• P5.2	 Write a program that computes taxes for the following schedule.

If your status is Single and
if the taxable income is over but not over the tax is of the amount over

$0 $8,000 10% $0

$8,000 $32,000 $800 + 15% $8,000

$32,000 $4,400 + 25% $32,000

If your status is Married and
if the taxable income is over but not over the tax is of the amount over

$0 $16,000 10% $0

$16,000 $64,000 $1,600 + 15% $16,000

$64,000 $8,800 + 25% $64,000

••• P5.3	 The TaxReturn.java program uses a simplified version of the 2008 U.S. income tax
schedule. Look up the tax brackets and rates for the current year, for both single and
married filers, and implement a program that computes the actual income tax.

••• P5.4	 Unit conversion. Write a unit conversion program that asks the users from which
unit they want to convert (fl. oz, gal, oz, lb, in, ft, mi) and to which unit they want
to convert (ml, l, g, kg, mm, cm, m, km). Reject incompatible conversions (such as
gal → km). Ask for the value to be converted, then display the result:

Convert from? gal
Convert to? ml
Value? 2.5
2.5 gal = 9462.5 ml

• P5.5	 Write a program that reads in the x- and y-coordinates of two corner points of a
rectangle and then prints out whether the rectangle is a square, or is in “portrait” or
“landscape” orientation.

•• P5.6	 Write a program that reads in the x- and y-coordinates of three corner points of a
triangle and prints out whether it has an obtuse angle, a right angle, or only acute
angles.

••• P5.7	 Write a program that reads in the x- and y-coordinates of four corner points of a
quadrilateral and prints out whether it is a square, a rectangle, a trapezoid, a rhom-
bus, or none of those shapes.

••• P5.8	 A year with 366 days is called a leap year. Leap years are necessary to keep the cal
endar synchronized with the sun because the earth revolves around the sun once
every 365.25 days. Actually, that figure is not entirely precise, and for all dates after
1582 the Gregorian correction applies. Usually years that are divisible by 4 are leap
years, for example 1996. However, years that are divisible by 100 (for example, 1900)
are not leap years, but years that are divisible by 400 are leap years (for example,
2000). Write a program that asks the user for a year and computes whether that year
is a leap year. Provide a class Year with a method isLeapYear. Use a single if statement
and Boolean operators.

Programming Projects  229

••• P5.9	 Roman numbers. Write a program that converts a positive integer into the Roman
number system. The Roman number system has digits

I		 1
V		 5
X		 10
L		 50
C		 100
D		 500
M		 1,000

Numbers are formed according to the following rules:
a.	Only numbers up to 3,999 are represented.
b.	As in the decimal system, the thousands, hundreds, tens, and ones are

expressed separately.
c.	The numbers 1 to 9 are expressed as

I		 1 	 IV	 4	 VII	 7
II		 2 	 V	 5 	 VIII	 8
III	 3 	 VI	 6 	 IX	 9
As you can see, an I preceding a V or X is subtracted from the value, and you
can never have more than three I’s in a row.

d.	Tens and hundreds are done the same way, except that the letters X, L, C and C,
D, M are used instead of I, V, X, respectively.

Your program should take an input, such as 1978, and convert it to Roman numerals,
MCMLXXVIII.

••• P5.10	 French country names are feminine when they end with the letter e, masculine other-
wise, except for the following which are masculine even though they end with e:

•	 le Belize
•	 le Cambodge
•	 le Mexique
•	 le Mozambique
•	 le Zaïre
•	 le Zimbabwe

Write a program that reads the French name of a country and adds the article: le for
masculine or la for feminine, such as le Canada or la Belgique.
However, if the country name starts with a vowel, use l’; for example, l’Afghanistan.
For the following plural country names, use les:

•	 les Etats-Unis
•	 les Pays-Bas

••• Business P5.11	 Write a program to simulate a bank transaction. There are two bank accounts: check-
ing and savings. First, ask for the initial balances of the bank accounts; reject negative
balances. Then ask for the transactions; options are deposit, withdrawal, and trans-
fer. Then ask for the account; options are checking and savings. Reject transactions
that overdraw an account. At the end, print the balances of both accounts.

© Straitshooter/iStockphoto.

©
 S

tr
ai

ts
ho

ot
er

/iS
to

ck
ph

ot
o.

230  Chapter 5  Decisions

•• Business P5.12	 When you use an automated teller machine (ATM) with
your bank card, you need to use a personal identification
number (PIN) to access your account. If a user fails more
than three times when entering the PIN, the machine will
block the card. Assume that the user’s PIN is “1234” and
write a program that asks the user for the PIN no more than
three times, and does the following:

•	 If the user enters the right number, print a message saying, “Your PIN is
correct”, and end the program.

•	 If the user enters a wrong number, print a message saying, “Your PIN is
incorrect” and, if you have asked for the PIN less than three times, ask for it
again.

•	 If the user enters a wrong number three times, print a message saying “Your
bank card is blocked” and end the program.

• Business P5.13	 Calculating the tip when you go to a restaurant is not difficult, but your restaurant
wants to suggest a tip according to the service diners receive. Write a program that
calculates a tip according to the diner’s satisfaction as follows:

•	 Ask for the diners’ satisfaction level using these ratings: 1 = Totally satisfied,
2 = Satisfied, 3 = Dissatisfied.

•	 If the diner is totally satisfied, calculate a 20 percent tip.
•	 If the diner is satisfied, calculate a 15 percent tip.
•	 If the diner is dissatisfied, calculate a 10 percent tip.
•	 Report the satisfaction level and tip in dollars and cents.

• Science P5.14	 Write a program that prompts the user for a wavelength value and prints a descrip-
tion of the corresponding part of the electromagnetic spectrum, as given in the fol-
lowing table.

Electromagnetic Spectrum

Type Wavelength (m) Frequency (Hz)

Radio Waves > 10–1 < 3 × 109

Microwaves 10–3 to 10–1 3 × 109 to 3 × 1011

Infrared 7 × 10–7 to 10–3 3 × 1011 to 4 × 1014

Visible light 4 × 10–7 to 7 × 10–7 4 × 1014 to 7.5 × 1014

Ultraviolet 10–8 to 4 × 10–7 7.5 × 1014 to 3 × 1016

X-rays 10–11 to 10–8 3 × 1016 to 3 × 1019

Gamma rays < 10–11 > 3 × 1019

• Science P5.15	 Repeat Exercise P5.14, modifying the program so that it prompts for the frequency
instead.

•• Science P5.16	 Repeat Exercise P5.14, modifying the program so that it first asks the user whether
the input will be a wavelength or a frequency.

© Mark Evans/iStockphoto.

© drxy/iStockphoto.
©

 M
ar

k
E

va
ns

/
iS

to
ck

ph
ot

o.

©
 d

rx
y/

iS
to

ck
ph

ot
o.

Programming Projects  231

••• Science P5.17	 A minivan has two sliding doors. Each door can be opened
by either a dashboard switch, its inside handle, or its
outside handle. However, the inside handles do not work
if a child lock switch is activated. In order for the sliding
doors to open, the gear shift must be in park, and the
master unlock switch must be activated. (This book’s
author is the long-suffering owner of just such a vehicle.)
Your task is to simulate a portion of the control software for the vehicle. The input is
a sequence of values for the switches and the gear shift, in the following order:

•	 Dashboard switches for left and right sliding door, child lock, and master
unlock (0 for off or 1 for activated)

•	 Inside and outside handles on the left and right sliding doors (0 or 1)

•	 The gear shift setting (one of P N D 1 2 3 R).

A typical input would be 0 0 0 1 0 1 0 0 P.
Print “left door opens” and/or “right door opens” as appropriate. If neither door
opens, print “both doors stay closed”.

• Science P5.18	 Sound level L in units of decibel (dB) is determined by

L = 20 log10(p/p0)

where p is the sound pressure of the sound (in Pascals, abbreviated Pa), and p0 is a
reference sound pressure equal to 20 × 10–6 Pa (where L is 0 dB). The following table
gives descriptions for certain sound levels.

Threshold of pain	 130 dB
Possible hearing damage	 120 dB
Jack hammer at 1 m	 100 dB
Traffic on a busy roadway at 10 m	 90 dB
Normal conversation	 60 dB
Calm library	 30 dB
Light leaf rustling	 0 dB

Write a program that reads a value and a unit, either dB or Pa, and then prints the
closest description from the list above.

•• Science P5.19	 The electric circuit shown below is designed to measure the temperature of the gas in
a chamber.

+
–Vs = 20 V

Rs = 75 Ω

R Vm

+

–

Voltmeter

11.43 V

The resistor R represents a temperature sensor enclosed in the chamber. The resis-
tance R, in Ω, is related to the temperature T, in °C, by the equation

R R kT= +0

© nano/iStockphoto.

© Photobuff/iStockphoto.

©
 n

an
o/

iS
to

ck
ph

ot
o

©
 P

ho
to

bu
ff

/iS
to

ck
ph

ot
o.

232  Chapter 5  Decisions

In this device, assume R0 = 100 Ω and k = 0.5. The voltmeter displays the value of the
voltage, Vm , across the sensor. This voltage Vm indicates the temperature, T, of the
gas according to the equation

T
R
k

R
k

R
k

V
V V

R
k

s m

s m
= − =

−
−0 0

Suppose the voltmeter voltage is constrained to the range Vmin = 12 volts ≤ Vm ≤
Vmax = 18 volts. Write a program that accepts a value of Vm and checks that it is
between 12 and 18. The program should return the gas temperature in degrees
Celsius when Vm is between 12 and 18 and an error message when it isn’t.

••• Science P5.20	 Crop damage due to frost is one of the many risks confronting farmers. The figure
below shows a simple alarm circuit designed to warn of frost. The alarm circuit uses
a device called a thermistor to sound a buzzer when the temperature drops below
freezing. Thermistors are semiconductor devices that exhibit a temperature depen-
dent resistance described by the equation

R R e T T=
−

⎛
⎝⎜

⎞
⎠⎟

0

1 1

0

β

where R is the resistance, in Ω, at the temperature T in °K, and R0 is the resistance, in
Ω, at the temperature T0 in °K. β is a constant that depends on the material used to
make the thermistor.

–

+

9 V

R3

R4R2

RThermistor

9 V

Comparator

Buzzer

The circuit is designed so that the alarm will sound when

R

R R

R

R R
2

2

4

3 4+
<

+

The thermistor used in the alarm circuit has R0 = 33,192 Ω at T0 = 40 °C, and
β = 3,310 °K. (Notice that β has units of °K. The temperature in °K is obtained by
adding 273° to the temperature in °C.) The resistors R2, R3, and R4 have a resistance
of 156.3 kΩ = 156,300 Ω.
Write a Java program that prompts the user for a temperature in °F and prints a
message indicating whether or not the alarm will sound at that temperature.

• Science P5.21	 A mass m = 2 kilograms is attached to the end of a rope of length r = 3 meters. The
mass is whirled around at high speed. The rope can withstand a maximum tension
of T = 60 Newtons. Write a program that accepts a rotation speed v and determines
whether such a speed will cause the rope to break. Hint: T m v r= 2 .

© rotofrank/iStockphoto.

©
 r

ot
of

ra
nk

/iS
to

ck
ph

ot
o.

Answers to Self-Check Questions  233

• Science P5.22	 A mass m is attached to the end of a rope of length r = 3 meters. The rope can only
be whirled around at speeds of 1, 10, 20, or 40 meters per second. The rope can
withstand a maximum tension of T = 60 Newtons. Write a program where the user
enters the value of the mass m, and the program determines the greatest speed at
which it can be whirled without breaking the rope. Hint: T m v r= 2 .

•• Science P5.23	 The average person can jump off the ground with a
velocity of 7 mph without fear of leaving the planet.
However, if an astronaut jumps with this velocity
while standing on Halley’s Comet, will the astro-
naut ever come back down? Create a program that
allows the user to input a launch velocity (in mph)
from the surface of Halley’s Comet and determine
whether a jumper will return to the surface. If not,
the program should calculate how much more
massive the comet must be in order to return the
jumper to the surface.

Hint: Escape velocity is v
GM

Rescape = 2 , where G N m kg= × −6 67 10 11 2 2. is the

gravitational constant, M kg= ×1 3 1022. is the mass of Halley’s comet, and

R m= ×1 153 106. is its radius.

Courtesy NASA/JPL-Caltech.

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 Change the if statement to
if (floor > 14)
{
 actualFloor = floor - 2;
}

2.	 85. 90. 85.
3.	 The only difference is if originalPrice is 100.

The statement in Self Check 2 sets discounted-
Price to 90; this one sets it to 80.

4.	 95. 100. 95.
5.	 if (fuelAmount < 0.10 * fuelCapacity)

{
 System.out.println("red");
}
else
{
 System.out.println("green");
}

6.	 (a) and (b) are both true, (c) is false.
7.	 floor <= 13
8.	 The values should be compared with ==, not =.
9.	 input.equals("Y")

10.	 str.equals("") or str.length() == 0
11.	 (a) 0; (b) 1; (c) An exception occurs.
12.	 Syntactically incorrect: e, g, h. Logically ques-

tionable: a, d, f.
13.	 if (scoreA > scoreB)

{
 System.out.println("A won");
}
else if (scoreA < scoreB)
{
 System.out.println("B won");
}
else
{
 System.out.println("Game tied");
}

14.	 if (x > 0) { s = 1; }
else if (x < 0) { s = -1; }
else { s = 0; }

15.	 You could first set s to one of the three values:
s = 0;
if (x > 0) { s = 1; }
else if (x < 0) { s = -1; }

C
ou

rt
es

y
N

A
SA

/J
P

L
-C

al
te

ch
.

234  Chapter 5  Decisions

16.	 The if (price <= 100) can be omitted (leaving
just else), making it clear that the else branch is
the sole alternative.

17.	 No destruction of buildings.
18.	 Add a branch before the final else:

else if (richter < 0)
{
 System.out.println("Error: Negative input");
}

19.	 3200.
20.	 No. Then the computation is 0.10 × 32000 +

0.25 × (32000 – 32000).
21.	 No. Their individual tax is $5,200 each, and if

they married, they would pay $10,400. Actu-
ally, taxpayers in higher tax brackets (which
our program does not model) may pay higher
taxes when they marry, a phenomenon known
as the marriage penalty.

22.	 Change else in line 22 to
else if (maritalStatus.equals("N"))

and add another branch after line 25:
else
{
 System.out.println(
 "Error: Please answer Y or N.");
}

23.	 The higher tax rate is only applied on the
income in the higher bracket. Suppose you are
single and make $31,900. Should you try to get
a $200 raise? Absolutely: you get to keep 90
percent of the first $100 and 75 percent of the
next $100.

24.	

25.	 The “True” arrow from the first decision
points into the “True” branch of the second
decision, creating spaghetti code.

26.	 Here is one solution. In Section 5.7, you will
see how you can combine the conditions for a
more elegant solution.

27.	

28.	

True

False

temp < 0? Print “Frozen”

Read temp

True

False

Input < 0? Status = “Error”

True

False

Input > 100?

Status = “OK”

Status = “Error”

True

False

Print Print “Error”

x < 0?

Read x

True

False

temp < 0? Print “Ice”

True

False

temp > 100? Print “Steam”

Print “Liquid”

Read temp

Answers to Self-Check Questions  235

29.	 Test
Case

Expected
Output

Comment

12 12 Below 13th floor
14 13 Above 13th floor
13 ? The specification is not clear— See

Section 5.8 for a version of this
program with error handling

30.	 A boundary test case is a price of $128. A 16
percent discount should apply because the
problem statement states that the larger dis-
count applies if the price is at least $128. Thus,
the expected output is $107.52.

31.	 Test
Case

Expected
Output

Comment

9 Most structures fall
7.5 Many buildings destroyed
6.5 Many buildings ...
5 Damage to poorly...
3 No destruction...

8.0 Most structures fall Boundary case. In
this program,
boundary cases are
not as significant
because the behavior
of an earthquake
changes gradually.

-1 The specification is
not clear—see Self
Check 18 for a version
of this program with
error handling.

32.	 Test Case Expected Output Comment
(0.5, 0.5) inside

(4, 2) outside
(0, 2) on the boundary Exactly on the boundary

(1.414, 1.414) on the boundary Close to the boundary
(0, 1.9) inside Not less than 1 mm from

the boundary
(0, 2.1) outside Not less than 1 mm from

the boundary

33.	 x == 0 && y == 0
34.	 x == 0 || y == 0

35.	 (x == 0 && y != 0) || (y == 0 && x != 0)
36.	 The same as the value of frozen.
37.	 You are guaranteed that there are no other

values. With strings or integers, you would
need to check that no values such as "maybe"
or –1 enter your calculations.

38.	 (a) Error: The floor must be between 1 and 20.
(b) Error: The floor must be between 1 and 20.
(c) 19 (d) Error: Not an integer.

39.	 floor == 13 || floor <= 0 || floor > 20
40.	 Check for in.hasNextDouble(), to make sure a

researcher didn’t supply an input such as oh
my. Check for weight <= 0, because any rat must
surely have a positive weight. We don’t know
how giant a rat could be, but the New Guinea
rats weighed no more than 2 kg. A regular
house rat (rattus rattus) weighs up to 0.2 kg,
so we’ll say that any weight > 10 kg was surely
an input error, perhaps confusing grams and
kilograms. Thus, the checks are
if (in.hasNextDouble())
{
 double weight = in.nextDouble();
 if (weight < 0)
 {
 System.out.println(
 "Error: Weight cannot be negative.");
 }
 else if (weight > 10)
 {
 System.out.println(
 "Error: Weight > 10 kg.");
 }
 else
 {
 Process valid weight.
 }
}
else
}
 System.out.print("Error: Not a number");
}

41.	 The second input fails, and the program ter-
minates without printing anything.

Extracting the Middle   WE1

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 1	 Decide on the branching condition.

We need to take different actions for strings of odd and even length. Therefore, the condition is

Is the length of the string odd?
In Java, you use the remainder of division by 2 to find out whether a value is even or odd. Then
the test becomes

str.length() % 2 == 1?

Step 2	 Give pseudocode for the work that needs to be done when the condition is true.

We need to find the position of the middle character. If the length is 5, the position is 2.

0 1 2 3 4

c r a t e

In general,

position = str.length() / 2 (with the remainder discarded)
result = str.substring(position, position + 1)

Step 3	 Give pseudocode for the work (if any) that needs to be done when the condition is not true.

Again, we need to find the position of the middle character. If the length is 6, the starting posi-
tion is 2, and the ending position is 3. That is, we would call

result = str.substring(2, 4);
(Recall that the second parameter of the substring method is the first position that we do not
extract.)

0 1 2 3 4 5

c r a t e s

In general,

position = str.length() / 2 - 1
result = str.substring(position, position + 2)

Step 4	 Double-check relational operators.

Do we really want str.length() % 2 == 1? For example, when the length is 5, 5 % 2 is the remain
der of the division 5 / 2, which is 1. In general, dividing an odd number by 2 leaves a remainder
of 1. (Actually, dividing a negative odd number by 2 leaves a remainder of –1, but the string
length is never negative.) Therefore, our condition is correct.

© Tom Horyn/iStockphoto.

Worked Example 5.1	 Extracting the Middle

Problem Statement  Your task is to extract a string containing the middle character from
a given string str. For example, if the string is "crate", the result is the string "a". However,
if the string has an even number of letters, extract the middle two characters. If the string is
"crates", the result is "at".

© Alex Slobodkin/iStockphoto.

WE2  Chapter 5  Decisions

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 5	 Remove duplication.

Here is the statement that we have developed:

If str.length() % 2 == 1
	 position = str.length() / 2 (with remainder discarded)
	 result = str.substring(position, position + 1)
Else
	 position = str.length() / 2 - 1
	 result = str.substring(position, position + 2)

The second statement in each branch is almost identical, but the length of the substring differs.
Let’s set the length in each branch:

If str.length() % 2 == 1
	 position = str.length() / 2 (with remainder discarded)
	 length = 1
Else
	 position = str.length() / 2 - 1
	 length = 2
result = str.substring(position, position + length)

Step 6	 Test both branches.

We will use a different set of strings for testing. For an odd-length string, consider "monitor".
We get

position = str.length() / 2 = 7 / 2 = 3 (with remainder discarded)
length = 1
result = str.substring(3, 4) = "i"

For the even-length string "monitors", we get

position = str.length() / 2 - 1 = 8 / 2 - 1 = 3 (with remainder discarded)
length = 2
result = str.substring(3, 5) = "it"

Step 7	 Assemble the if statement in Java.

Here’s the completed code segment:

if (str.length() % 2 == 1)
{
 position = str.length() / 2;
 length = 1;
}
else
{
 position = str.length() / 2 - 1;
 length = 2;
}
String result = str.substring(position, position + length);

You can find the complete program in the ch05/worked_example_1 directory of the book’s com-
panion code.

6C H A P T E R

237

LOOPS

To implement while, for, and do loops

To hand-trace the execution of a program

To learn to use common loop algorithms

To understand nested loops

To implement programs that read and process data sets

To use a computer for simulations

To learn about the debugger

CHAPTER GOALS

CHAPTER CONTENTS

6.1  THE WHILE LOOP  238

SYN 	 while Statement  239
CE 1 	 Don’t Think “Are We There Yet?”  243
CE 2 	 Infinite Loops  244
CE 3 	 Off-by-One Errors  244

6.2  PROBLEM SOLVING:
HAND-TRACING  245

C&S 	 Digital Piracy  249

6.3  THE FOR LOOP  250

SYN 	 for Statement  250
PT 1 	 Use for Loops for Their Intended

Purpose Only  255
PT 2 	 Choose Loop Bounds That Match

Your Task  256
PT 3 	 Count Iterations  256
ST 1 	 Variables Declared in a for Loop

Header  257

6.4  THE DO LOOP  258

PT 4 	 Flowcharts for Loops  259

6.5  APPLICATION: PROCESSING
SENTINEL VALUES  259

ST 2 	 Redirection of Input and Output  262
ST 3 	 The “Loop and a Half” Problem  262
ST 4 	 The break and continue Statements  263

6.6  PROBLEM SOLVING:
STORYBOARDS  265

6.7  COMMON LOOP ALGORITHMS  268

HT 1 	 Writing a Loop  272
WE 1 	 Credit Card Processing 

© Alex Slobodkin/iStockphoto.
6.8  NESTED LOOPS  275

WE 2 	 Manipulating the Pixels in an Image 
© Alex Slobodkin/iStockphoto.

6.9  APPLICATION: RANDOM NUMBERS
AND SIMULATIONS  279

6.10  USING A DEBUGGER  282

HT 2 	 Debugging  285
WE 3 	 A Sample Debugging Session 

© Alex Slobodkin/iStockphoto.C&S 	 The First Bug  287

© photo75/iStockphoto.
© photo75/iStockphoto.

238

In a loop, a part of a program is repeated over and over,
until a specific goal is reached. Loops are important for
calculations that require repeated steps and for processing
input consisting of many data items. In this chapter, you will
learn about loop statements in Java, as well as techniques
for writing programs that process input and simulate
activities in the real world.

6.1  The while Loop
In this section, you will learn about loop statements that
repeatedly execute instructions until a goal has been
reached.

Recall the investment problem from Chapter 1.
You put $10,000 into a bank account that earns 5 percent
interest per year. How many years does it take for the
account balance to be double the original investment?

In Chapter 1 we developed the following algorithm
for this problem:

Start with a year value of 0, a column for the interest, and a balance of $10,000.

 year interest balance
 0 $10,000

Repeat the following steps while the balance is less than $20,000.
	 Add 1 to the year value.
	 Compute the interest as balance x 0.05 (i.e., 5 percent interest).
	 Add the interest to the balance.
Report the final year value as the answer.

You now know how to declare and update the variables in Java. What you don’t yet
know is how to carry out “Repeat steps while the balance is less than $20,000”.

© AlterYourReality/iStockphoto.

Because the interest
earned also earns interest,
a bank balance grows
exponentially.

In a particle accelerator, subatomic particles
traverse a loop-shaped tunnel multiple times,
gaining the speed required for physical experiments.
Similarly, in computer science, statements in a
loop are executed while a condition is true.

© mmac72/iStockphoto.

© photo75/iStockphoto.

© photo75/iStockphoto.

©
 A

lt
er

Y
ou

rR
ea

lit
y/

iS

to
ck

ph
ot

o.
©

 m
m

ac
72

/iS
to

ck
ph

ot
o.

6.1  The while Loop   239

Figure 1  Flowchart of a while Loop

False

True

Calculate
interest

Add interest
to balance

Increment
year

balance <
targetBalance?

In Java, the while statement implements such a
repetition (see Syntax 6.1). It has the form

while (condition)
{
 statements
}

As long as the condition remains true, the statements
inside the while statement are executed. These state­
ments are called the body of the while statement.

In our case, we want to increment the year coun­
ter and add interest while the balance is less than the
target balance of $20,000:

while (balance < targetBalance)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

A while statement is an example of a loop. If you draw a flowchart, the flow of execu­
tion loops again to the point where the condition is tested (see Figure 1).

A loop executes
instructions
repeatedly while a
condition is true.

Syntax 6.1	 while Statement

Lining up braces
is a good idea.
 See page 181.

double balance = 0;
.
.
.
while (balance < targetBalance)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

If the condition
never becomes false,
an in�nite loop occurs.
 See page 244.

These statements
are executed while
the condition is true.

Don’t put a semicolon here!
 See page 182.

Beware of “off-by-one”
errors in the loop condition.

 See page 244.

Braces are not required if the body contains
a single statement, but it’s good to always use them.

 See page 181.

This variable is declared outside the loop
and updated in the loop.

This variable is created
in each loop iteration.

while (condition)
{
 statements
}

Syntax

240  Chapter 6  Loops

When you declare a variable inside the loop body, the variable is created for each
iteration of the loop and removed after the end of each iteration. For example, con­
sider the interest variable in this loop:

while (balance < targetBalance)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}
// interest no longer declared here

A new interest variable
is created in each iteration.

Figure 2 
Execution of the
Investment Loop

while (balance < targetBalance)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}
System.out.println(year);

while (balance < targetBalance)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

Check the loop condition1 The condition is true

while (balance < targetBalance)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

Execute the statements in the loop2

while (balance < targetBalance)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

Check the loop condition again3 The condition is still true

while (balance < targetBalance)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

After 15 iterations4 The condition is
no longer true

Execute the statement following the loop5

.

.

.

year = 0

balance = 10000

year = 1

interest = 500

balance = 10500

year = 1

balance = 10500

year = 15

balance = 20789.28

year = 15

balance = 20789.28

6.1  The while Loop   241

In contrast, the balance and year variables were declared outside the loop body. That
way, the same variable is used for all iterations of the loop.

Here is the program that solves the investment problem. Figure 2 illustrates the
program’s execution.

section_1/Investment.java

1 /**
2 A class to monitor the growth of an investment that
3 accumulates interest at a fixed annual rate.
4 */
5 public class Investment
6 {
7 private double balance;
8 private double rate;
9 private int year;

10
11 /**
12 Constructs an Investment object from a starting balance and
13 interest rate.
14 @param aBalance the starting balance
15 @param aRate the interest rate in percent
16 */
17 public Investment(double aBalance, double aRate)
18 {
19 balance = aBalance;
20 rate = aRate;
21 year = 0;
22 }
23
24 /**
25 Keeps accumulating interest until a target balance has
26 been reached.
27 @param targetBalance the desired balance
28 */
29 public void waitForBalance(double targetBalance)
30 {
31 while (balance < targetBalance)
32 {
33 year++;
34 double interest = balance * rate / 100;
35 balance = balance + interest;
36 }
37 }
38
39 /**
40 Gets the current investment balance.
41 @return the current balance
42 */
43 public double getBalance()
44 {
45 return balance;
46 }
47
48 /**
49 Gets the number of years this investment has accumulated
50 interest.
51 @return the number of years since the start of the investment

242  Chapter 6  Loops

52 */
53 public int getYears()
54 {
55 return year;
56 }
57 }

section_1/InvestmentRunner.java

1 /**
2 This program computes how long it takes for an investment
3 to double.
4 */
5 public class InvestmentRunner
6 {
7 public static void main(String[] args)
8 {
9 final double INITIAL_BALANCE = 10000;

10 final double RATE = 5;
11 Investment invest = new Investment(INITIAL_BALANCE, RATE);
12 invest.waitForBalance(2 * INITIAL_BALANCE);
13 int years = invest.getYears();
14 System.out.println("The investment doubled after "
15 + years + " years");
16 }
17 }

Program Run

The investment doubled after 15 years.

1.	 How many years does it take for the investment to triple? Modify the program
and run it.

2.	 If the interest rate is 10 percent per year, how many years does it take for the
investment to double? Modify the program and run it.

3.	 Modify the program so that the balance after each year is printed. How did you
do that?

4.	 Suppose we change the program so that the condition of the while loop is
while (balance <= targetBalance)

What is the effect on the program? Why?
5.	 What does the following loop print?

int n = 1;
while (n < 100)
{
 n = 2 * n;
 System.out.print(n + " ");
}

Practice It	 Now you can try these exercises at the end of the chapter: R6.4, R6.8, E6.14.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

6.1  The while Loop   243

Table 1 while Loop Examples

Loop Output Explanation

i = 0; sum = 0;
while (sum < 10)
{
 i++; sum = sum + i;
 Print i and sum;
}

1 1
2 3
3 6
4 10

When sum is 10, the loop condition is
false, and the loop ends.

i = 0; sum = 0;
while (sum < 10)
{
 i++; sum = sum - i;
 Print i and sum;
}

1 -1
2 -3
3 -6
4 -10
. . .

Because sum never reaches 10, this is an
“infinite loop” (see Common Error 6.2
on page 244).

i = 0; sum = 0;
while (sum < 0)
{
 i++; sum = sum - i;
 Print i and sum;
}

(No output) The statement sum < 0 is false when the
condition is first checked, and the loop
is never executed.

i = 0; sum = 0;
while (sum >= 10)
{
 i++; sum = sum + i;
 Print i and sum;
}

(No output) The programmer probably thought,
“Stop when the sum is at least 10.”
However, the loop condition controls
when the loop is executed, not when it
ends (see Common Error 6.1 on page
243).

i = 0; sum = 0;
while (sum < 10) ;
{
 i++; sum = sum + i;
 Print i and sum;
}

(No output, program
does not terminate)

Note the semicolon before the {.
This loop has an empty body. It runs
forever, checking whether sum < 10 and
doing nothing in the body.

Don’t Think “Are We There Yet?”

When doing something repetitive, most of us want to know when
we are done. For example, you may think, “I want to get at least
$20,000,” and set the loop condition to

balance >= targetBalance

But the while loop thinks the opposite: How long am I allowed to
keep going? The correct loop condition is

while (balance < targetBalance)

In other words: “Keep at it while the balance is less than the target.”

When writing a loop condition, don’t ask, “Are we there yet?”
The condition determines how long the loop will keep going.

Common Error 6.1

© John Bell/iStockphoto.

© MsSponge/iStockphoto.

©
 M

sS
po

ng
e/

iS
to

ck
ph

ot
o.

244  Chapter 6  Loops

Infinite Loops

A very annoying loop error is an infinite loop: a loop that
runs forever and can be stopped only by killing the program
or restarting the computer. If there are output statements
in the program, then reams and reams of output flash by on
the screen. Otherwise, the program just sits there and hangs,
seeming to do nothing. On some systems, you can kill a hang­
ing program by hitting Ctrl + C. On others, you can close the
window in which the program runs.

A common reason for infinite loops is forgetting to update
the variable that controls the loop:

int year = 1;
while (year <= 20)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

Here the programmer forgot to add a year++ command in the loop. As a result, the year always
stays at 1, and the loop never comes to an end.

Another common reason for an infinite loop is accidentally incrementing a counter that
should be decremented (or vice versa). Consider this example:

int year = 20;
while (year > 0)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
 year++;
}

The year variable really should have been decremented, not incremented. This is a common
error because incrementing counters is so much more common than decrementing that your
fingers may type the ++ on autopilot. As a consequence, year is always larger than 0, and the
loop never ends. (Actually, year may eventually exceed the largest representable positive inte­
ger and wrap around to a negative number. Then the loop ends—of course, with a completely
wrong result.)

Off-by-One Errors

Consider our computation of the number of years that are required to double an investment:

int year = 0;
while (balance < targetBalance)
{
 year++;
 balance = balance * (1 + RATE / 100);
}
System.out.println("The investment doubled after "
 + year + " years.");

Should year start at 0 or at 1? Should you test for balance < targetBalance or for balance <=
targetBalance? It is easy to be off by one in these expressions.

Common Error 6.2

© John Bell/iStockphoto.

© ohiophoto/iStockphoto.Like this hamster who can’t
stop running in the treadmill,
an infinite loop never ends.

Common Error 6.3

© John Bell/iStockphoto.

©
 o

hi
op

ho
to

/iS
to

ck
ph

ot
o.

6.2  Problem Solving: Hand-Tracing   245

Some people try to solve off-by-one errors by randomly inserting +1 or -1 until the pro­
gram seems to work—a terrible strategy. It can take a long time to compile and test all the vari­
ous possibilities. Expending a small amount of mental effort is a real time saver.

Fortunately, off-by-one errors are easy to avoid, simply by think­
ing through a couple of test cases and using the information from the
test cases to come up with a rationale for your decisions.

Should year start at 0 or at 1? Look at a scenario with simple values:
an initial balance of $100 and an interest rate of 50 percent. After year
1, the balance is $150, and after year 2 it is $225, or over $200. So the
investment doubled after 2 years. The loop executed two times, incre­
menting year each time. Hence year must start at 0, not at 1.

 year balance
 0 $100
 1 $150
 2 $225

In other words, the balance variable denotes the balance after the end of the year. At the outset,
the balance variable contains the balance after year 0 and not after year 1.

Next, should you use a < or <= comparison in the test? This is harder to figure out, because it
is rare for the balance to be exactly twice the initial balance. There is one case when this happens,
namely when the interest is 100 percent. The loop executes once. Now year is 1, and balance
is exactly equal to 2 * INITIAL_BALANCE. Has the investment doubled after one year? It has.
Therefore, the loop should not execute again. If the test condition is balance < targetBalance,
the loop stops, as it should. If the test condition had been balance <= targetBalance, the loop
would have executed once more.

In other words, you keep adding interest while the balance has not yet doubled.

6.2  Problem Solving: Hand-Tracing
In Programming Tip 5.5, you learned about the method of hand-tracing. When you
hand-trace code or pseudocode, you write the names of the variables on a sheet of
paper, mentally execute each step of the code, and update the variables.

It is best to have the code written or printed on a sheet of paper. Use a marker,
such as a paper clip, to mark the current line. Whenever a variable changes, cross out
the old value and write the new value below. When a program produces output, also
write down the output in another column.

Consider this example. What value is displayed?
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

An off-by-one error
is a common error
when programming
loops. Think through
simple test cases
to avoid this type
of error.

Hand-tracing is a
simulation of code
execution in which
you step through
instructions and
track the values of
the variables.

246  Chapter 6  Loops

There are three variables: n, sum, and digit.

The first two variables are initialized with 1729 and 0 before the loop is entered.
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

Because n is greater than zero, enter the loop. The variable digit is set to 9 (the remain-
der of dividing 1729 by 10). The variable sum is set to 0 + 9 = 9.

int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

Finally in this iteration, n becomes 172. (Recall that the remainder in the division
1729 / 10 is discarded because both arguments are integers.)

Cross out the old values and write the new ones under the old ones.
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

Now check the loop condition again.
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

 n sum digit

 n sum digit
 1729 0

©
 Y

van D
ube/iStockphoto.

 n sum digit
 1729 0
 9 9

©
 Y

van D
ube/iStockphoto.

 n sum digit
 1729 0
 172 9 9

©
 Y

van D
ube/iStockphoto.©

 Y
van D

ube/iStockphoto. (paperclip): © Yvan Dube/iStockphoto.

6.2  Problem Solving: Hand-Tracing   247

Because n is still greater than zero, repeat
the loop. Now digit becomes 2, sum is set to
9 + 2 = 11, and n is set to 17.

Repeat the loop once again, setting digit to
7, sum to 11 + 7 = 18, and n to 1.

Enter the loop for one last time. Now digit
is set to 1, sum to 19, and n becomes zero.

int n = 1729;
int sum = 0;
while (n > 0) Because n equals zero,

this condition is not true.
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

The condition n > 0 is now false. Continue with the statement after the loop.
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

This statement is an output statement. The value that is output is the value of sum,
which is 19.

 n sum digit
 1729 0
 172 9 9
 17 11 2

 n sum digit
 1729 0
 172 9 9
 17 11 2
 1 18 7

 n sum digit
 1729 0
 172 9 9
 17 11 2
 1 18 7
 0 19 1

©
 Y

van D
ube/iStockphoto.

 n sum digit output
 1729 0
 172 9 9
 17 11 2
 1 18 7
 0 19 1 19©

 Y
van D

ube/iStockphoto.

248  Chapter 6  Loops

Of course, you can get the same answer by just running the code. However, hand-
tracing can give you an insight that you would not get if you simply ran the code.
Consider again what happens in each iteration:

•	 We extract the last digit of n.
•	 We add that digit to sum.
•	 We strip the digit off n.

In other words, the loop forms the sum of the digits in n. You now know what the
loop does for any value of n, not just the one in the example. (Why would anyone
want to form the sum of the digits? Operations of this kind are useful for checking
the validity of credit card numbers and other forms of ID numbers.)

Hand-tracing does not just help you understand code that works correctly. It is
a powerful technique for finding errors in your code. When a program behaves in a
way that you don’t expect, get out a sheet of paper and track the values of the vari­
ables as you mentally step through the code.

You don’t need a working program to do hand-tracing. You can hand-trace
pseudocode. In fact, it is an excellent idea to hand-trace your pseudocode before you
go to the trouble of translating it into actual code, to confirm that it works correctly.

6.	 Hand-trace the following code, showing the value of n and the output.
int n = 5;
while (n >= 0)
{
 n--;
 System.out.print(n);
}

7.	 Hand-trace the following code, showing the value of n and the output. What
potential error do you notice?
int n = 1;
while (n <= 3)
{
 System.out.print(n + ", ");
 n++;
}

8.	 Hand-trace the following code, assuming that a is 2 and n is 4. Then explain what
the code does for arbitrary values of a and n.
int r = 1;
int i = 1;
while (i <= n)
{
 r = r * a;
 i++;
}

9.	 Trace the following code. What error do you observe?
int n = 1;
while (n != 50)
{
 System.out.println(n);
 n = n + 10;
}

Hand-tracing can
help you understand
how an unfamiliar
algorithm works.

Hand-tracing can
show errors in code
or pseudocode.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

6.2  Problem Solving: Hand-Tracing   249

10.	 The following pseudocode is intended to count the number of digits in the
number n:
count = 1
temp = n
while (temp > 10)
	 Increment count.
	 Divide temp by 10.0.
Trace the pseudocode for n = 123 and n = 100. What error do you find?

Practice It	 Now you can try these exercises at the end of the chapter: R6.6, R6.9.

Computing & Society 6.1  Digital Piracy

As you read this,
you will have writ-

ten a few computer programs and
experienced firsthand how much effort
it takes to write even the humblest of
programs. Writing a real software prod-
uct, such as a financial application or a
computer game, takes a lot of time and
money. Few people, and fewer compa-
nies, are going to spend that kind of
time and money if they don’t have a
reasonable chance to make more
money from their effort. (Actually,
some companies give away their soft-
ware in the hope that users will click on
advertisements or upgrade to more
elaborate paid versions. Other compa-
nies give away the software that
enables users to read and use files but
sell the software needed to create
those files. Finally, there are individu-
als who donate their time, out of enthu-
siasm, and produce programs that you
can copy freely.)

When selling software, a company
must rely on the honesty of its cus
tomers. It is an easy matter for an
unscrupulous person to make copies
of computer programs without paying
for them. In most countries that is ille
gal. Most governments provide legal
protection, such as copyright laws and
patents, to encourage the develop
ment of new products. Countries that
tolerate widespread piracy have found

that they have an ample cheap supply
of foreign software, but no local man
ufacturers willing to design good soft
ware for their own citizens, such as
word processors in the local script or
financial programs adapted to the local
tax laws.

When a mass market for software
first appeared, vendors were enraged
by the money they lost through piracy.
They tried to fight back to ensure
that only the legitimate owner could
use the software by using various
schemes, such as dongles—devices
that must be attached to a printer port
before the software will run. Legitimate
users hated these measures. They paid
for the software, but they had to suffer
through inconveniences, such as hav-
ing multiple dongles sticking out from
their computer.

Because it is so easy and inexpen
sive to pirate software, and the chance
of being found out is minimal, you
have to make a moral choice for your
self. If a package that you would really
like to have is too expensive for your
budget, do you steal it, or do you stay
honest and get by with a more afford
able product?

Of course, piracy is not limited to
software. The same issues arise for
other digital products as well. You may
have had the opportunity to obtain
copies of songs or movies without

payment. Or you may have been frus-
trated by a copy protection device
on your music player that made it dif
ficult for you to listen to songs that you
paid for. Admittedly, it can be difficult
to have a lot of sympathy for a musi-
cal ensemble whose publisher charges
a lot of money for what seems to have
been very little effort on their part, at
least when compared to the effort that
goes into designing and implementing
a software package. Nevertheless, it
seems only fair that artists and authors
receive some compensation for their
efforts.

How to pay artists, authors, and
programmers fairly, without burdening
honest customers, is an unsolved prob-
lem at the time
of this writing,
and many
computer
scientists
are engaged
in research in
this area.

© Media Bakery.

© RapidEye/iStockphoto.

©
 R

ap
id

E
ye

/iS
to

ck
ph

ot
o.

250  Chapter 6  Loops

6.3  The for Loop
It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example:

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
 System.out.println(counter);
 counter++; // Update the counter
}

Because this loop type is so common, there is a spe­
cial form for it, called the for loop (see Syntax 6.2).

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Some people call this loop count-controlled. In con­
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance reaches
the target. Another commonly used term for a
count-controlled loop is definite. You know from
the outset that the loop body will be executed a defi­
nite number of times; ten times in our example. In
contrast, you do not know how many iterations it
takes to accumulate a target balance. Such a loop is
called indefinite.

The for loop is
used when a
value runs from a
starting point to an
ending point with a
constant increment
or decrement.

© Enrico Fianchini/iStockphoto.You can visualize the for loop as
an orderly sequence of steps.

Syntax 6.2	 for Statement

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
}

This loop executes 6 times.
 See page 256.

This initialization
happens once
before the loop starts.

The condition is
checked before
each iteration.

This update is
executed after
each iteration.

The variable i is
de�ned only in this for loop.

See page 257.

These three
expressions should be related.

 See page 255.

for (initialization; condition; update)
{
 statements
}

Syntax

©
 E

nr
ic

o
Fi

an
ch

in
i/i

St
oc

kp
ho

to
.

6.3  The for Loop   251

The for loop neatly groups the initialization, condition, and update expressions
together. However, it is important to realize that these expressions are not executed
together (see Figure 3).

•	 The initialization is executed once, before the loop is entered. 1

•	 The condition is checked before each iteration. 2 5

•	 The update is executed after each iteration. 4

A for loop can count down instead of up:
for (int counter = 10; counter >= 0; counter--) . . .

The increment or decrement need not be in steps of 1:
for (int counter = 0; counter <= 10; counter = counter + 2) . . .

See Table 2 on page 254 for additional variations.
So far, we have always declared the counter variable in the loop initialization:
for (int counter = 1; counter <= 10; counter++)
{
 . . .
}
// counter no longer declared here

Figure 3 
Execution of a
for Loop

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

252  Chapter 6  Loops

Such a variable is declared for all iterations of the loop, but you cannot use it after
the loop. If you declare the counter variable before the loop, you can continue to use
it after the loop:

int counter;
for (counter = 1; counter <= 10; counter++)
{
 . . .
}
// counter still declared here

A common use of the for loop is to traverse all characters of a string:
for (int i = 0; i < str.length(); i++)
{
 char ch = str.charAt(i);
 Process ch.
}

Note that the counter variable i starts at 0, and the loop is terminated when i reaches
the length of the string. For example, if str has length 5, i takes on the values 0, 1, 2, 3,
and 4. These are the valid positions in the string.

Here is another typical use of the for loop. We want to compute the growth of our
savings account over a period of years, as shown in this table:

Year Balance

1 10500.00

2 11025.00

3 11576.25

4 12155.06

5 12762.82

The for loop pattern applies because the variable
year starts at 1 and then moves in constant incre­
ments until it reaches the target:

for (int year = 1; year <= numberOfYears; year++)
{
 Update balance.
}

Following is the complete program. Figure 4 shows
the corresponding flowchart.

Figure 4  Flowchart of a for Loop

True

False

year++

year ≤
numberOfYears ?

year = 1

Update balance

6.3  The for Loop   253

section_3/Investment.java

1 /**
2 A class to monitor the growth of an investment that
3 accumulates interest at a fixed annual rate.
4 */
5 public class Investment
6 {
7 private double balance;
8 private double rate;
9 private int year;

10
11 /**
12 Constructs an Investment object from a starting balance and
13 interest rate.
14 @param aBalance the starting balance
15 @param aRate the interest rate in percent
16 */
17 public Investment(double aBalance, double aRate)
18 {
19 balance = aBalance;
20 rate = aRate;
21 year = 0;
22 }
23
24 /**
25 Keeps accumulating interest until a target balance has
26 been reached.
27 @param targetBalance the desired balance
28 */
29 public void waitForBalance(double targetBalance)
30 {
31 while (balance < targetBalance)
32 {
33 year++;
34 double interest = balance * rate / 100;
35 balance = balance + interest;
36 }
37 }
38
39 /**
40 Keeps accumulating interest for a given number of years.
41 @param numberOfYears the number of years to wait
42 */
43 public void waitYears(int numberOfYears)
44 {
45 for (int i = 1; i <= numberOfYears; i++)
46 {
47 double interest = balance * rate / 100;
48 balance = balance + interest;
49 }
50 year = year + n;
51 }
52
53 /**
54 Gets the current investment balance.
55 @return the current balance
56 */
57 public double getBalance()
58 {

254  Chapter 6  Loops

59 return balance;
60 }
61
62 /**
63 Gets the number of years this investment has accumulated
64 interest.
65 @return the number of years since the start of the investment
66 */
67 public int getYears()
68 {
69 return year;
70 }
71 }

section_3/InvestmentRunner.java

1 /**
2 This program computes how much an investment grows in
3 a given number of years.
4 */
5 public class InvestmentRunner
6 {
7 public static void main(String[] args)
8 {
9 final double INITIAL_BALANCE = 10000;

10 final double RATE = 5;
11 final int YEARS = 20;
12 Investment invest = new Investment(INITIAL_BALANCE, RATE);
13 invest.waitYears(YEARS);
14 double balance = invest.getBalance();
15 System.out.printf("The balance after %d years is %.2f\n",
16 YEARS, balance);
17 }
18 }

Program Run

The balance after 20 years is 26532.98

Table 2 for Loop Examples

Loop Values of i Comment

for (i = 0; i <= 5; i++) 0 1 2 3 4 5 Note that the loop is executed 6 times. (See
Programming Tip 6.3 on page 256.)

for (i = 5; i >= 0; i--) 5 4 3 2 1 0 Use i-- for decreasing values.

for (i = 0; i < 9; i = i + 2) 0 2 4 6 8 Use i = i + 2 for a step size of 2.

for (i = 0; i != 9; i = i + 2) 0 2 4 6 8 10 12 14 …
(infinite loop)

You can use < or <= instead of != to avoid
this problem.

for (i = 1; i <= 20; i = i * 2) 1 2 4 8 16 You can specify any rule for modifying i,
such as doubling it in every step.

for (i = 0; i < str.length(); i++) 0 1 2 … until the last valid
index of the string str

In the loop body, use the expression
str.charAt(i) to get the ith character.

6.3  The for Loop   255

11.	 Write the for loop of the Investment class as a while loop.
12.	 How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{
 System.out.println(n);
}

13.	 Write a for loop that prints all even numbers between 10 and 20 (inclusive).
14.	 Write a for loop that computes the sum of the integers from 1 to n.
15.	 How would you modify the InvestmentRunner.java program to print the balances

after 20, 40, …, 100 years?

Practice It	 Now you can try these exercises at the end of the chapter: R6.7, R6.13, E6.9, E6.13.

Use for Loops for Their Intended Purpose Only

A for loop is an idiom for a loop of a particular form. A value runs from the start to the end,
with a constant increment or decrement.

The compiler won’t check whether the initialization, condition, and update expressions are
related. For example, the following loop is legal:

// Confusing—unrelated expressions
for (System.out.print("Inputs: "); in.hasNextDouble(); sum = sum + x)
{
 x = in.nextDouble();
}

However, programmers reading such a for loop will be confused because it does not match
their expectations. Use a while loop for iterations that do not follow the for idiom.

You should also be careful not to update the loop counter in the body of a for loop. Con­
sider the following example:

for (int counter = 1; counter <= 100; counter++)
{
 if (counter % 10 == 0) // Skip values that are divisible by 10
 {
 counter++; // Bad style—you should not update the counter in a for loop
 }
 System.out.println(counter);
}

Updating the counter inside a for loop is confusing because the counter is updated again at the
end of the loop iteration. In some loop iterations, counter is incremented once, in others twice.
This goes against the intuition of a programmer who sees a for loop.

If you find yourself in this situation, you can either change from a for loop to a while loop,
or implement the “skipping” behavior in another way. For example:

for (int counter = 1; counter <= 100; counter++)
{
 if (counter % 10 != 0) // Skip values that are divisible by 10
 {
 System.out.println(counter);
 }
}

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Programming Tip 6.1

© Eric Isselé/iStockphoto.

256  Chapter 6  Loops

Choose Loop Bounds That Match Your Task

Suppose you want to print line numbers that go from 1 to 10. Of course, you will use a loop:

for (int i = 1; i <= 10; i++)

The values for i are bounded by the relation 1 ≤ i≤ 10. Because there are ≤ on both bounds, the
bounds are called symmetric bounds.

When traversing the characters in a string, it is more natural to use the bounds

for (int i = 0; i < str.length(); i++)

In this loop, i traverses all valid positions in the string. You can access the ith character as
str.charAt(i). The values for i are bounded by 0 ≤ i < str.length(), with a ≤ to the left and a <
to the right. That is appropriate, because str.length() is not a valid position. Such bounds are
called asymmetric bounds.

In this case, it is not a good idea to use symmetric bounds:

for (int i = 0; i <= str.length() - 1; i++) // Use < instead

The asymmetric form is easier to understand.

Count Iterations

Finding the correct lower and upper bounds for an iteration can be confusing. Should you
start at 0 or at 1? Should you use <= b or < b as a termination condition?

Counting the number of iterations is a very useful device for better understanding a loop.
Counting is easier for loops with asymmetric bounds. The loop

for (int i = a; i < b; i++)

is executed b - a times. For example, the loop traversing the characters in a string,

for (int i = 0; i < str.length(); i++)

runs str.length() times. That makes perfect sense, because there are str.length() characters in
a string.

The loop with symmetric bounds,

for (int i = a; i <= b; i++)

is executed b - a + 1 times. That “+1” is the source of many programming errors.
For example,

for (int i = 0; i <= 10; i++)

runs 11 times. Maybe that is what you want; if not, start at 1 or use < 10.
One way to visualize this “+1” error is

by looking at a fence. Each section has one
fence post to the left, and there is a final post
on the right of the last section. Forgetting to
count the last value is often called a “fence
post error”.

How many posts do you need for a fence
with four sections? It is easy to be “off by one”

with problems such as this one.

Programming Tip 6.2

© Eric Isselé/iStockphoto.

Programming Tip 6.3

© Eric Isselé/iStockphoto.

© akaplummer/iStockphoto.

©
 a

ka
pl

um
m

er
/iS

to
ck

ph
ot

o.

6.3  The for Loop   257

Variables Declared in a for Loop Header

As mentioned, it is legal in Java to declare a variable in the header of a for loop. Here is the
most common form of this syntax:

for (int i = 1; i <= n; i++)
{
 . . .
}

// i no longer defined here

The scope of the variable extends to the end of the for loop. Therefore, i is no longer defined
after the loop ends. If you need to use the value of the variable beyond the end of the loop, then
you need to declare it outside the loop. In this loop, you don’t need the value of i—you know
it is n + 1 when the loop is finished. (Actually, that is not quite true—it is possible to break out
of a loop before its end; see Special Topic 6.4 on page 263). When you have two or more exit
conditions, though, you may still need the variable. For example, consider the loop

for (i = 1; balance < targetBalance && i <= n; i++)
{
 . . .
}

You want the balance to reach the target but you are willing to wait only a certain number of
years. If the balance doubles sooner, you may want to know the value of i. Therefore, in this
case, it is not appropriate to declare the variable in the loop header.

Note that the variables named i in the following pair of for loops are independent:

for (int i = 1; i <= 10; i++)
{
 System.out.println(i * i);
}

for (int i = 1; i <= 10; i++) // Declares a new variable i
{
 System.out.println(i * i * i);
}

In the loop header, you can declare multiple variables, as long as they are of the same type, and
you can include multiple update expressions, separated by commas:

for (int i = 0, j = 10; i <= 10; i++, j–-)
{
 . . .
}

However, many people find it confusing if a for loop controls more than one variable. I recom­
mend that you not use this form of the for statement (see Programming Tip 6.1 on page 255).
Instead, make the for loop control a single counter, and update the other variable explicitly:

int j = 10;
for (int i = 0; i <= 10; i++)
{
 . . .
 j––;
}

Special Topic 6.1

© Eric Isselé/iStockphoto.

258  Chapter 6  Loops

6.4  The do Loop
Sometimes you want to execute the body of a loop at least once and perform the loop
test after the body is executed. The do loop serves that purpose:

do
{
 statements
}
while (condition);

The body of the do loop is executed first, then the condition is tested.
Some people call such a loop a post-test loop because

the condition is tested after completing the loop body. In
contrast, while and for loops are pre-test loops. In those
loop types, the condition is tested before entering the
loop body.

A typical example for a do loop is input validation.
Suppose you ask a user to enter a value < 100. If the user
doesn’t pay attention and enters a larger value, you ask
again, until the value is correct. Of course, you cannot
test the value until the user has entered it. This is a perfect
fit for the do loop (see Figure 5):

int value;
do
{
 System.out.print("Enter an integer < 100: ");
 value = in.nextInt();
}
while (value >= 100);

Figure 5  Flowchart of a do Loop

16.	 Suppose that we want to check for inputs that are at least 0 and at most 100.
Modify the input validation do loop for this test.

17.	 Rewrite the input validation do loop using a while loop. What is the disadvantage
of your solution?

18.	 Suppose Java didn’t have a do loop. Could you rewrite any do loop as a while
loop?

19.	 Write a do loop that reads integers and computes their sum. Stop when reading
the value 0.

20.	 Write a do loop that reads integers and computes their sum. Stop when reading a
zero or the same value twice in a row. For example, if the input is 1 2 3 4 4, then
the sum is 14 and the loop stops.

Practice It	 Now you can try these exercises at the end of the chapter: R6.12, R6.19, R6.20.

The do loop is
appropriate when
the loop body
must be executed
at least once.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a program that
illustrates the use of
the do loop for input
validation.

© Alex Slobodkin/iStockphoto.

True

False

value ≥ 100?

Prompt user
to enter

a value < 100

Copy the input
to value

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

6.5  Application: Processing Sentinel Values   259

Flowcharts for Loops

In Section 5.5 you learned how to use flowcharts to visualize the flow of control in a program.
There are two types of loops that you can include in a flowchart; they correspond to a while
loop and a do loop in Java. They differ in the placement of the condition—either before or after
the loop body.

False

True

Loop body

Condition?

   

True

False

Loop body

Condition?

As described in Section 5.5, you want to avoid “spaghetti code” in your flowcharts. For loops,
that means that you never want to have an arrow that points inside a loop body.

6.5  Application: Processing Sentinel Values
In this section, you will learn how to write loops that read and process a sequence of
input values.

Whenever you read a sequence of inputs, you need to have some method of indi­
cating the end of the sequence. Sometimes you are lucky and no input value can be
zero. Then you can prompt the user to keep entering numbers, or 0 to finish the
sequence. If zero is allowed but negative numbers
are not, you can use –1 to indicate termination.

Such a value, which is not an actual input,
but serves as a signal for termination, is called a
sentinel.

Let’s put this technique to work in a program
that computes the average of a set of salary values.
In our sample program, we will use –1 as a sentinel.
An employee would surely not work for a nega­
tive salary, but there may be volunteers who work
for free.

In the military, a sentinel guards a border or passage.
In computer science, a sentinel value denotes the end of an

input sequence or the border between input sequences.

Programming Tip 6.4

© Eric Isselé/iStockphoto.

© Rhoberazzi/iStockphoto.

A sentinel value
denotes the end of a
data set, but it is not
part of the data.

©
 R

ho
be

ra
zz

i/i
St

oc
kp

ho
to

.

260  Chapter 6  Loops

Inside the loop, we read an input. If the input is not –1, we process it. In order to
compute the average, we need the total sum of all salaries, and the number of inputs.

salary = in.nextDouble();
if (salary != -1)
{
 sum = sum + salary;
 count++;
}

We stay in the loop while the sentinel value is not detected.
while (salary != -1)
{
 . . .
}

There is just one problem: When the loop is entered for the first time, no data value
has been read. We must make sure to initialize salary with some value other than the
sentinel:

double salary = 0;
// Any value other than –1 will do

After the loop has finished, we compute and print the average. Here is the complete
program:

section_5/SentinelDemo.java

1 import java.util.Scanner;
2
3 /**
4 This program prints the average of salary values that are terminated with a sentinel.
5 */
6 public class SentinelDemo
7 {
8 public static void main(String[] args)
9 {

10 double sum = 0;
11 int count = 0;
12 double salary = 0;
13 System.out.print("Enter salaries, -1 to finish: ");
14 Scanner in = new Scanner(System.in);
15
16 // Process data until the sentinel is entered
17
18 while (salary != -1)
19 {
20 salary = in.nextDouble();
21 if (salary != -1)
22 {
23 sum = sum + salary;
24 count++;
25 }
26 }
27
28 // Compute and print the average
29
30 if (count > 0)
31 {
32 double average = sum / count;

6.5  Application: Processing Sentinel Values   261

33 System.out.println("Average salary: " + average);
34 }
35 else
36 {
37 System.out.println("No data");
38 }
39 }
40 }

Program Run

Enter salaries, -1 to finish: 10 10 40 -1
Average salary: 20

Some programmers don’t like the “trick” of initializing the input variable with a value
other than the sentinel. Another approach is to use a Boolean variable:

System.out.print("Enter salaries, -1 to finish: ");
boolean done = false;
while (!done)
{
 value = in.nextDouble();
 if (value == -1)
 {
 done = true;
 }
 else
 {
 Process value.
 }
}

Special Topic 6.4 on page 263 shows an alternative mechanism for leaving such a loop.
Now consider the case in which any number (positive, negative, or zero) can be

an acceptable input. In such a situation, you must use a sentinel that is not a number
(such as the letter Q). As you have seen in Section 5.8, the condition

in.hasNextDouble()

is false if the next input is not a floating-point number. Therefore, you can read and
process a set of inputs with the following loop:

System.out.print("Enter values, Q to quit: ");
while (in.hasNextDouble())
{
 value = in.nextDouble();
 Process value.
}

21.	 What does the SentinelDemo.java program print when the user immediately types
–1 when prompted for a value?

22.	 Why does the SentinelDemo.java program have two checks of the form
salary != -1

23.	 What would happen if the declaration of the salary variable in SentinelDemo.java
was changed to
double salary = -1;

You can use a
Boolean variable to
control a loop. Set
the variable before
entering the loop,
then set it to the
opposite to leave
the loop.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

262  Chapter 6  Loops

24.	 In the last example of this section, we prompt the user “Enter values, Q to quit: ”
What happens when the user enters a different letter?

25.	 What is wrong with the following loop for reading a sequence of values?
System.out.print("Enter values, Q to quit: ");
do
{
 double value = in.nextDouble();
 sum = sum + value;
 count++;
}
while (in.hasNextDouble());

Practice It	 Now you can try these exercises at the end of the chapter: R6.16, E6.20, E6.21.

Redirection of Input and Output

Consider the SentinelDemo program that computes the average
value of an input sequence. If you use such a program, then it is
quite likely that you already have the values in a file, and it seems
a shame that you have to type them all in again. The command
line interface of your operating system provides a way to link a
file to the input of a program, as if all the characters in the file had
actually been typed by a user. If you type

java SentinelDemo < numbers.txt

the program is executed, but it no longer expects input from the keyboard. All input com­
mands get their input from the file numbers.txt. This process is called input redirection.

Input redirection is an excellent tool for testing programs. When you develop a program
and fix its bugs, it is boring to keep entering the same input every time you run the program.
Spend a few minutes putting the inputs into a file, and use redirection.

You can also redirect output. In this program, that is not terribly useful. If you run

java SentinelDemo < numbers.txt > output.txt

the file output.txt contains the input prompts and the output, such as

Enter salaries, -1 to finish: Enter salaries, -1 to finish:
Enter salaries, -1 to finish: Enter salaries, -1 to finish:
Average salary: 15

However, redirecting output is obviously useful for programs that produce lots of output.
You can format or print the file containing the output.

The “Loop and a Half” Problem

Reading input data sometimes requires a loop such as the following, which is somewhat
unsightly:

boolean done = false;
while (!done)
{
 String input = in.next();
 if (input.equals("Q"))
 {
 done = true;

Special Topic 6.2

© Eric Isselé/iStockphoto.

Use input redirection to
read input from a file.
Use output redirection to
capture program output
in a file.

Special Topic 6.3

© Eric Isselé/iStockphoto.

6.5  Application: Processing Sentinel Values   263

 }
 else
 {
 Process data.
 }
}

The true test for loop termination is in the middle of the loop, not at the top. This is called a
“loop and a half”, because one must go halfway into the loop before knowing whether one
needs to terminate.

Some programmers dislike the introduction of an additional Boolean variable for loop
control. Two Java language features can be used to alleviate the “loop and a half” problem. I
don’t think either is a superior solution, but both approaches are fairly common, so it is worth
knowing about them when reading other people’s code.

You can combine an assignment and a test in the loop condition:

while (!(input = in.next()).equals("Q"))
{
 Process data.
}

The expression

(input = in.next()).equals("Q")

means, “First call in.next(), then assign the result to input, then test whether it equals "Q"”.
This is an expression with a side effect. The primary purpose of the expression is to serve as a
test for the while loop, but it also does some work—namely, reading the input and storing it in
the variable input. In general, it is a bad idea to use side effects, because they make a program
hard to read and maintain. In this case, however, that practice is somewhat seductive, because
it eliminates the control variable done, which also makes the code hard to read and maintain.

The other solution is to exit the loop from the middle, either by a return statement or by a
break statement (see Special Topic 6.4 on page 263).

public void processInput(Scanner in)
{
 while (true)
 {
 String input = in.next();
 if (input.equals("Q"))
 {
 return;
 }
 Process data.
 }
}

The break and continue Statements

You already encountered the break statement in Special Topic 5.2, where it was used to exit a
switch statement. In addition to breaking out of a switch statement, a break statement can also
be used to exit a while, for, or do loop.

For example, the break statement in the following loop terminates the loop when the end of
input is reached.

while (true)
{

Special Topic 6.4

© Eric Isselé/iStockphoto.

264  Chapter 6  Loops

 String input = in.next();
 if (input.equals("Q"))
 {
 break;
 }
 double x = Double.parseDouble(input);
 data.add(x);
}

A loop with break statements can be difficult to understand because you have to look closely
to find out how to exit the loop. However, when faced with the bother of introducing a sepa­
rate loop control variable, some programmers find that break statements are beneficial in the
“loop and a half” case. This issue is often the topic of heated (and quite unproductive) debate.
In this book, we won’t use the break statement, and we leave it to you to decide whether you
like to use it in your own programs.

In Java, there is a second form of the break statement that is used to break out of a nested
statement. The statement break label; immediately jumps to the end of the statement that is
tagged with a label. Any statement (including if and block statements) can be tagged with a
label—the syntax is

label: statement

The labeled break statement was invented to break out of a set of nested loops.

outerloop:
while (outer loop condition)
{ . . .
 while (inner loop condition)
 { . . .
 if (something really bad happened)
 {
 break outerloop;
 }
 }
}
Jumps here if something really bad happened.

Naturally, this situation is quite rare. We recommend that you try to introduce additional
methods instead of using complicated nested loops.

Finally, there is the continue statement, which jumps to the end of the current iteration of
the loop. Here is a possible use for this statement:

while (!done)
{
 String input = in.next();
 if (input.equals("Q"))
 {
 done = true;
 continue; // Jump to the end of the loop body
 }
 double x = Double.parseDouble(input);
 data.add(x);
 // continue statement jumps here
}

By using the continue statement, you don’t need to place the remainder of the loop code inside
an else clause. This is a minor benefit. Few programmers use this statement.

6.6  Problem Solving: Storyboards   265

6.6  Problem Solving: Storyboards
When you design a program that interacts with a user, you need to make a plan for
that interaction. What information does the user provide, and in which order? What
information will your program display, and in which format? What should happen
when there is an error? When does the program quit?

This planning is similar to the development of a movie or a computer game, where
storyboards are used to plan action sequences. A storyboard is made up of panels that
show a sketch of each step. Annotations explain what is happening and note any spe­
cial situations. Storyboards are also used to develop software—see Figure 6.

Making a storyboard is very helpful when you begin designing a program. You
need to ask yourself which information you need in order to compute the answers
that the program user wants. You need to decide how to present those answers. These
are important considerations that you want to settle before you design an algorithm
for computing the answers.

Let’s look at a simple example. We want to write a program that helps users with
questions such as “How many tablespoons are in a pint?” or “How many inches are
30 centimeters?”

What information does the user provide?

•	 The quantity and unit to convert from
•	 The unit to convert to

What if there is more than one quantity? A user may have a whole table of centimeter
values that should be converted into inches.

What if the user enters units that our program doesn’t know how to handle, such
as ångström?

What if the user asks for impossible conversions, such as inches to gallons?

A storyboard
consists of annotated
sketches for each
step in an action
sequence.

Developing a
storyboard helps
you understand the
inputs and outputs
that are required for
a program.

Figure 6 
Storyboard for the
Design of a Web
Application

Courtesy of Martin Hardee.

C
ou

rt
es

y
of

 M
ar

ti
n

H
ar

de
e.

266  Chapter 6  Loops

Let’s get started with a storyboard panel. It is a good idea to write the user inputs in
a different color. (Underline them if you don’t have a color pen handy.)

What unit do you want to convert from? cm
What unit do you want to convert to? in
Enter values, terminated by zero
30
30 cm = 11.81 in
100
100 cm = 39.37 in
0
What unit do you want to convert from?

Format makes clear what got converted

Allows conversion of multiple values

Converting a Sequence of Values

The storyboard shows how we deal with a potential confusion. A user who wants to
know how many inches are 30 centimeters may not read the first prompt carefully
and specify inches. But then the output is “30 in = 76.2 cm”, alerting the user to the
problem.

The storyboard also raises an issue. How is the user supposed to know that “cm”
and “in” are valid units? Would “centimeter” and “inches” also work? What happens
when the user enters a wrong unit? Let’s make another storyboard to demonstrate
error handling.

What unit do you want to convert from? cm
What unit do you want to convert to? inches
Sorry, unknown unit.
What unit do you want to convert to? inch
Sorry, unknown unit.
What unit do you want to convert to? grrr

Handling Unknown Units (needs improvement)

To eliminate frustration, it is better to list the units that the user can supply.

From unit (in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal): cm
To unit: in

No need to list the units again

We switched to a shorter prompt to make room for all the unit names. Exercise R6.25
explores a different alternative.

There is another issue that we haven’t addressed yet. How does the user quit the
program? The first storyboard suggests that the program will go on forever.

We can ask the user after seeing the sentinel that terminates an input sequence.

6.6  Problem Solving: Storyboards   267

From unit (in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal): cm
To unit: in
Enter values, terminated by zero
30
30 cm = 11.81 in
0
More conversions (y, n)? n
(Program exits)

Sentinel triggers the prompt to exit

Exiting the Program

As you can see from this case study, a storyboard is essential for developing a work­
ing program. You need to know the flow of the user interaction in order to structure
your program.

26.	 Provide a storyboard panel for a program that reads a number of test scores and
prints the average score. The program only needs to process one set of scores.
Don’t worry about error handling.

27.	 Google has a simple interface for converting units. You just type the question,
and you get the answer.

Make storyboards for an equivalent interface in a Java program. Show a scenario
in which all goes well, and show the handling of two kinds of errors.

28.	 Consider a modification of the program in Self Check 26. Suppose we want to
drop the lowest score before computing the average. Provide a storyboard for
the situation in which a user only provides one score.

29.	 What is the problem with implementing the following storyboard in Java?

Enter scores: 90 80 90 100 80
The average is 88
Enter scores: 100 70 70 100 80
The average is 88
Enter scores: -1
(Program exits)

-1 is used as a sentinel to exit the program

Computing Multiple Averages

30.	 Produce a storyboard for a program that compares the growth of a $10,000
investment for a given number of years under two interest rates.

Practice It	 Now you can try these exercises at the end of the chapter: R6.24, R6.25, R6.26.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

268  Chapter 6  Loops

6.7  Common Loop Algorithms
In the following sections, we discuss some of the most common algorithms that are
implemented as loops. You can use them as starting points for your loop designs.

6.7.1  Sum and Average Value

Computing the sum of a number of inputs is a very common task. Keep a running
total, a variable to which you add each input value. Of course, the total should be
initialized with 0.

double total = 0;
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 total = total + input;
}

Note that the total variable is declared outside the loop. We want the loop to update
a single variable. The input variable is declared inside the loop. A separate variable is
created for each input and removed at the end of each loop iteration.

To compute an average, count how many values you have, and divide by the count.
Be sure to check that the count is not zero.

double total = 0;
int count = 0;
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 total = total + input;
 count++;
}
double average = 0;
if (count > 0)
{
 average = total / count;
}

6.7.2  Counting Matches

You often want to know how many values fulfill a particular condition. For example,
you may want to count how many spaces are in a string. Keep a counter, a variable
that is initialized with 0 and incremented whenever there is a match.

int spaces = 0;
for (int i = 0; i < str.length(); i++)
{
 char ch = str.charAt(i);
 if (ch == ' ')
 {
 spaces++;
 }
}

For example, if str is "My Fair Lady", spaces is incremented twice (when i is 2 and 7).

To compute an
average, keep a
total and a count
of all values.

To count values that
fulfill a condition,
check all values and
increment a counter
for each match.

6.7  Common Loop Algorithms   269

Note that the spaces variable is declared outside the loop. We want the loop to
update a single variable. The ch variable is declared inside the loop. A separate variable
is created for each iteration and removed at the end of each loop iteration.

This loop can also be used for scanning inputs. The following loop reads text a
word at a time and counts the number of words with at most three letters:

int shortWords = 0;
while (in.hasNext())
{
 String input = in.next();
 if (input.length() <= 3)
 {
 shortWords++;
 }
}

6.7.3  Finding the First Match

When you count the values that fulfill a condition, you need to look at all values.
However, if your task is to find a match, then you can stop as soon as the condition is
fulfilled.

Here is a loop that finds the first space in a string. Because we do not visit all ele­
ments in the string, a while loop is a better choice than a for loop:

boolean found = false;
char ch = '?';
int position = 0;
while (!found && position < str.length())
{
 ch = str.charAt(position);
 if (ch == ' ') { found = true; }
 else { position++; }
}

If a match was found, then found is true, ch is
the first matching character, and position is
the index of the first match. If the loop did
not find a match, then found remains false
after the end of the loop.

Note that the variable ch is declared out-
side the while loop because you may want to
use the input after the loop has finished. If it
had been declared inside the loop body, you
would not be able to use it outside the loop.

In a loop that counts matches,
a counter is incremented
whenever a match is found.

© Hiob/iStockphoto.

If your goal is to find
a match, exit the loop
when the match
is found.

© dr�et/iStockphoto.
When searching, you look at items until a
match is found.

©
 H

io
b/

iS
to

ck
ph

ot
o.

©
 d

rf
le

t/
iS

to
ck

ph
ot

o.

270  Chapter 6  Loops

6.7.4  Prompting Until a Match is Found

In the preceding example, we searched a string for a character that matches a condi­
tion. You can apply the same process to user input. Suppose you are asking a user to
enter a positive value < 100. Keep asking until the user provides a correct input:

boolean valid = false;
double input = 0;
while (!valid)
{
 System.out.print("Please enter a positive value < 100: ");
 input = in.nextDouble();
 if (0 < input && input < 100) { valid = true; }
 else { System.out.println("Invalid input."); }
}

Note that the variable input is declared outside the while loop because you will want to
use the input after the loop has finished.

6.7.5  Maximum and Minimum

To compute the largest value in a sequence, keep a variable that stores the largest ele­
ment that you have encountered, and update it when you find a larger one.

double largest = in.nextDouble();
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (input > largest)
 {
 largest = input;
 }
}

This algorithm requires that there is at least one input.
To compute the smallest value, simply reverse the comparison:
double smallest = in.nextDouble();
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (input < smallest)
 {
 smallest = input;
 }
}

To find the largest
value, update the
largest value seen so
far whenever you see
a larger one.

To find the height of the tallest bus rider,
remember the largest height so far, and
update it whenever you see a taller one.

© CEFutcher/iStockphoto.

©
 C

E
Fu

tc
he

r/
iS

to
ck

ph
ot

o.

6.7  Common Loop Algorithms   271

6.7.6  Comparing Adjacent Values

When processing a sequence of values in a loop, you sometimes need to compare a
value with the value that just preceded it. For example, suppose you want to check
whether a sequence of inputs, such as 1 7 2 9 9 4 9, contains adjacent duplicates.

Now you face a challenge. Consider the typical loop for reading a value:
double input;
while (in.hasNextDouble())
{
 input = in.nextDouble();
 . . .
}

How can you compare the current input
with the preceding one? At any time, input
contains the current input, overwriting the
previous one.

The answer is to store the previous input,
like this:

double input = 0;
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();
 if (input == previous)
 {
 System.out.println("Duplicate input");
 }
}

One problem remains. When the loop is entered for the first time, input has not yet
been read. You can solve this problem with an initial input operation outside the loop:

double input = in.nextDouble();
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();
 if (input == previous)
 {
 System.out.println("Duplicate input");
 }
}

31.	 What total is computed when no user input is provided in the algorithm in
Section 6.7.1?

32.	 How do you compute the total of all positive inputs?
33.	 What are the values of position and ch when no match is found in the algorithm

in Section 6.7.3?
34.	 What is wrong with the following loop for finding the position of the first space

in a string?
boolean found = false;
for (int position = 0; !found && position < str.length(); position++)
{

To compare adjacent
inputs, store the
preceding input in
a variable.

© tingberg/iStockphoto.
When comparing adjacent values, store
the previous value in a variable.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a program that
uses common loop
algorithms.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K
©

 ti
ng

be
rg

/iS
to

ck
ph

ot
o.

272  Chapter 6  Loops

 char ch = str.charAt(position);
 if (ch == ' ') { found = true; }
}

35.	 How do you find the position of the last space in a string?
36.	 What happens with the algorithm in Section 6.7.6 when no input is provided at

all? How can you overcome that problem?

Practice It	 Now you can try these exercises at the end of the chapter: E6.6, E6.10, E6.11.

Step 1	 Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
•	 Reading another item.
•	 Updating a value (such as a bank balance or total).
•	 Incrementing a counter.
If you can’t figure out what needs to go inside the loop, start by writing down the steps that
you would take if you solved the problem by hand. For example, with the temperature reading
problem, you might write

Read first value.
Read second value.
If second value is higher than the first, set highest temperature to that value, highest month to 2.
Read next value.
If value is higher than the first and second, set highest temperature to that value, highest month to 3.
Read next value.
If value is higher than the highest temperature seen so far, set highest temperature to that value,

highest month to 4.
. . .

Now look at these steps and reduce them to a set of uniform actions that can be placed into the
loop body. The first action is easy:

Read next value.
The next action is trickier. In our description, we used tests “higher than the first”, “higher
than the first and second”, “higher than the highest temperature seen so far”. We need to settle
on one test that works for all iterations. The last formulation is the most general.

© Steve Simzer/iStockphoto.

How To 6.1	 Writing a Loop

This How To walks you through the process of implementing a
loop statement. We will illustrate the steps with the following
example problem.

Problem Statement  Read twelve temperature values (one for
each month) and display the number of the month with the high­
est temperature. For example, according to worldclimate.com, the
average maximum temperatures for Death Valley are (in order by
month, in degrees Celsius):

18.2  22.6  26.4  31.1  36.6  42.2  45.7  44.5  40.2  33.1  24.2  17.6
In this case, the month with the highest temperature (45.7 degrees
Celsius) is July, and the program should display 7.

© Stevegeer/iStockphoto.

©
 S

te
ve

ge
er

/iS
to

ck
ph

ot
o.

6.7  Common Loop Algorithms   273

Similarly, we must find a general way of setting the highest month. We need a variable that
stores the current month, running from 1 to 12. Then we can formulate the second loop action:

If value is higher than the highest temperature, set highest temperature to that value,
highest month to current month.

Altogether our loop is

Repeat
	 Read next value.
	 If value is higher than the highest temperature,
		 set highest temperature to that value,

	 set highest month to current month.
	 Increment current month.

Step 2	 Specify the loop condition.

What goal do you want to reach in your loop? Typical examples are
•	 Has a counter reached its final value?
•	 Have you read the last input value?
•	 Has a value reached a given threshold?
In our example, we simply want the current month to reach 12.

Step 3	 Determine the loop type.

We distinguish between two major loop types. A count-controlled loop is executed a defi­
nite number of times. In an event-controlled loop, the number of iterations is not known in
advance—the loop is executed until some event happens.

Count-controlled loops can be implemented as for statements. For other loops, consider
the loop condition. Do you need to complete one iteration of the loop body before you can
tell when to terminate the loop? In that case, choose a do loop. Otherwise, use a while loop.

Sometimes, the condition for terminating a loop changes in the middle of the loop body. In
that case, you can use a Boolean variable that specifies when you are ready to leave the loop.
Follow this pattern:

boolean done = false;
while (!done)
{
 Do some work.
 If all work has been completed
 {
 done = true;
 }
 else
 {
 Do more work.
 }
}

Such a variable is called a flag.
In summary,

•	 If you know in advance how many times a loop is repeated, use a for loop.
•	 If the loop body must be executed at least once, use a do loop.
•	 Otherwise, use a while loop.
In our example, we read 12 temperature values. Therefore, we choose a for loop.

Step 4	 Set up variables for entering the loop for the first time.

List all variables that are used and updated in the loop, and determine how to initialize them.
Commonly, counters are initialized with 0 or 1, totals with 0.

274  Chapter 6  Loops

In our example, the variables are

current month
highest value
highest month

We need to be careful how we set up the highest temperature value. We can’t simply set it to
0. After all, our program needs to work with temperature values from Antarctica, all of which
may be negative.

A good option is to set the highest temperature value to the first input value. Of course,
then we need to remember to read in only 11 more values, with the current month starting at 2.

We also need to initialize the highest month with 1. After all, in an Australian city, we may
never find a month that is warmer than January.

Step 5	 Process the result after the loop has finished.

In many cases, the desired result is simply a variable that was updated in the loop body. For
example, in our temperature program, the result is the highest month. Sometimes, the loop
computes values that contribute to the final result. For example, suppose you are asked to
average the temperatures. Then the loop should compute the sum, not the average. After the
loop has completed, you are ready to compute the average: divide the sum by the number of
inputs.

Here is our complete loop.

Read first value; store as highest value.
highest month = 1
For current month from 2 to 12
	 Read next value.
	 If value is higher than the highest value
		 Set highest value to that value.
		 Set highest month to current month.

Step 6	 Trace the loop with typical examples.

Hand-trace your loop code, as described in Section 6.2. Choose example values that are not
too complex—executing the loop 3–5 times is enough to check for the most common errors.
Pay special attention when entering the loop for the first and last time.

Sometimes, you want to make a slight modification to make tracing feasible. For example,
when hand-tracing the investment doubling problem, use an interest rate of 20 percent rather
than 5 percent. When hand-tracing the temperature loop, use 4 data values, not 12.

Let’s say the data are 22.6  36.6  44.5  24.2. Here is the walkthrough:

 current month current value highest month highest value
 1 22.6
 2 36.6 2 36.6
 3 44.5 3 44.5
 4 24.2

The trace demonstrates that highest month and highest value are properly set.

Step 7	 Implement the loop in Java.

Here’s the loop for our example. Exercise E6.5 asks you to complete the program.

double highestValue;
highestValue = in.nextDouble();
int highestMonth = 1;

6.8  Nested Loops   275

for (int currentMonth = 2; currentMonth <= 12; currentMonth++)
{
 double nextValue = in.nextDouble();
 if (nextValue > highestValue)
 {
 highestValue = nextValue;
 highestMonth = currentMonth;
 }
}
System.out.println(highestMonth);

6.8  Nested Loops
In Section 5.4, you saw how to nest two if statements. Similarly, complex iterations
sometimes require a nested loop: a loop inside another loop statement. When pro­
cessing tables, nested loops occur naturally. An outer loop iterates over all rows of the
table. An inner loop deals with the columns in the current row.

In this section you will see how to print a table. For simplicity, we will simply print
the powers of x, xn, as in the table at right.

Here is the pseudocode for printing the table:

Print table header.
For x from 1 to 10
	 Print table row.
	 Print new line.

How do you print a table row? You need to print a
value for each exponent. This requires a second loop.

For n from 1 to 4
	 Print xn.

This loop must be placed inside the preceding loop. We say that the inner loop is
nested inside the outer loop.

© Tom Horyn/iStockphoto.

Worked Example 6.1	 Credit Card Processing

Learn how to use a loop to remove spaces from a credit card
number. Go to wiley.com/go/bjeo6examples and download
Worked Example 6.1.

© MorePixels/iStockphoto.

© Alex Slobodkin/iStockphoto.

When the body of
a loop contains
another loop, the
loops are nested. A
typical use of nested
loops is printing a
table with rows
and columns.

x1 x2 x3 x4

1 1 1 1

2 4 8 16

3 9 27 81

… … … …

10 100 1000 10000

The hour and minute displays in a digital clock are an
example of nested loops. The hours loop 12 times, and
for each hour, the minutes loop 60 times.

© davejkahn/iStockphoto.

©
 M

or
eP

ix
el

s/

iS
to

ck
ph

ot
o.

©
 d

av
ej

ka
hn

/iS
to

ck
ph

ot
o.

276  Chapter 6  Loops

Figure 7 
Flowchart of a Nested Loop

True

False x ≤ 10 ?

x = 1

True

False n ≤ 4 ?

n = 1

n++

Print xn

x++

Print new line

This loop is nested
in the outer loop.

There are 10 rows in the outer loop. For each x, the program prints four columns
in the inner loop (see Figure 7). Thus, a total of 10 × 4 = 40 values are printed.

Following is the complete program. Note that we also use two loops to print the
table header. However, those loops are not nested.

section_8/PowerTable.java

1 /**
2 This program prints a table of powers of x.
3 */
4 public class PowerTable
5 {
6 public static void main(String[] args)
7 {
8 final int NMAX = 4;
9 final double XMAX = 10;

10
11 // Print table header
12
13 for (int n = 1; n <= NMAX; n++)
14 {
15 System.out.printf("%10d", n);
16 }
17 System.out.println();

6.8  Nested Loops   277

18 for (int n = 1; n <= NMAX; n++)
19 {
20 System.out.printf("%10s", "x ");
21 }
22 System.out.println();
23
24 // Print table body
25
26 for (double x = 1; x <= XMAX; x++)
27 {
28 // Print table row
29
30 for (int n = 1; n <= NMAX; n++)
31 {
32 System.out.printf("%10.0f", Math.pow(x, n));
33 }
34 System.out.println();
35 }
36 }
37 }

Program Run

 1 2 3 4
 x x x x

 1 1 1 1
 2 4 8 16
 3 9 27 81
 4 16 64 256
 5 25 125 625
 6 36 216 1296
 7 49 343 2401
 8 64 512 4096
 9 81 729 6561
 10 100 1000 10000

37.	 Why is there a statement System.out.println(); in the outer loop but not in the
inner loop?

38.	 How would you change the program to display all powers from x0 to x5?
39.	 If you make the change in Self Check 38, how many values are displayed?
40.	 What do the following nested loops display?

for (int i = 0; i < 3; i++)
{
 for (int j = 0; j < 4; j++)
 {
 System.out.print(i + j);
 }
 System.out.println();
}

41.	 Write nested loops that make the following pattern of brackets:
[][][][]
[][][][]
[][][][]

Practice It	 Now you can try these exercises at the end of the chapter: R6.30, E6.17, E6.19.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

278  Chapter 6  Loops

Table 3 Nested Loop Examples

Nested Loops Output Explanation

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 4; j++) { Print "*" }
 System.out.println();
}

Prints 3 rows of 4
asterisks each.

for (i = 1; i <= 4; i++)
{
 for (j = 1; j <= 3; j++) { Print "*" }
 System.out.println();
}

Prints 4 rows of 3
asterisks each.

for (i = 1; i <= 4; i++)
{
 for (j = 1; j <= i; j++) { Print "*" }
 System.out.println();
}

*
**

Prints 4 rows of
lengths 1, 2, 3, and 4.

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 5; j++)
 {
 if (j % 2 == 0) { Print "*" }
 else { Print "-" }
 }
 System.out.println();
}

-*-*-
-*-*-
-*-*-

Prints asterisks in
even columns,
dashes in odd
columns.

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 5; j++)
 {
 if (i % 2 == j % 2) { Print "*" }
 else { Print " " }
 }
 System.out.println();
}

* * *
 * *
* * *

Prints a
checkerboard
pattern.

© Tom Horyn/iStockphoto.

Worked Example 6.2	 Manipulating the Pixels in an Image

Learn how to use nested loops for manipulating the
pixels in an image. The outer loop traverses the rows of
the image, and the inner loop accesses each pixel of a row.
Go to wiley.com/go/bjeo6examples and download Worked
Example 6.2.

Cay Horstmann.

© Alex Slobodkin/iStockphoto.

C
ay

 H
or

st
m

an
n.

6.9  Application: Random Numbers and Simulations   279

6.9  Application: Random Numbers
and Simulations

A simulation program uses the computer to simulate an activity in the real world (or
an imaginary one). Simulations are commonly used for predicting climate change,
analyzing traffic, picking stocks, and many other applications in science and busi­
ness. In many simulations, one or more loops are used to modify the state of a system
and observe the changes. You will see examples in the following sections.

6.9.1  Generating Random Numbers

Many events in the real world are difficult to predict with absolute precision, yet we
can sometimes know the average behavior quite well. For example, a store may know
from experience that a customer arrives every five minutes. Of course, that is an aver­
age—customers don’t arrive in five minute intervals. To accurately model customer
traffic, you want to take that random fluctuation into account. Now, how can you
run such a simulation in the computer?

The Random class of the Java library implements a random number generator that
produces numbers that appear to be completely random. To generate random num­
bers, you construct an object of the Random class, and then apply one of the following
methods:

Method Returns

nextInt(n) A random integer between the integers 0 (inclusive) and n (exclusive)

nextDouble() A random floating-point number between 0 (inclusive) and 1 (exclusive)

For example, you can simulate the cast of a die as follows:
Random generator = new Random();
int d = 1 + generator.nextInt(6);

The call generator.nextInt(6) gives you a random number between 0 and 5 (inclusive).
Add 1 to obtain a number between 1 and 6.

To give you a feeling for the random numbers, run the following program a few
times.

section_9_1/Die.java

1 import java.util.Random;
2
3 /**
4 This class models a die that, when cast, lands on a
5 random face.
6 */
7 public class Die
8 {
9 private Random generator;

10 private int sides;

In a simulation, you
use the computer to
simulate an activity.

You can introduce
randomness by
calling the random
number generator.

© ktsimage/iStockphoto.

©
 k

ts
im

ag
e/

iS
to

ck
ph

ot
o.

280  Chapter 6  Loops

11
12 /**
13 Constructs a die with a given number of sides.
14 @param s the number of sides, e.g., 6 for a normal die
15 */
16 public Die(int s)
17 {
18 sides = s;
19 generator = new Random();
20 }
21
22 /**
23 Simulates a throw of the die.
24 @return the face of the die
25 */
26 public int cast()
27 {
28 return 1 + generator.nextInt(sides);
29 }
30 }

section_9_1/DieSimulator.java

1 /**
2 This program simulates casting a die ten times.
3 */
4 public class DieSimulator
5 {
6 public static void main(String[] args)
7 {
8 Die d = new Die(6);
9 final int TRIES = 10;

10 for (int i = 1; i <= TRIES; i++)
11 {
12 int n = d.cast();
13 System.out.print(n + " ");
14 }
15 System.out.println();
16 }
17 }

Typical Program Run

6 5 6 3 2 6 3 4 4 1

Typical Program Run (Second Run)

3 2 2 1 6 5 3 4 1 2

As you can see, this program produces a different stream of simulated die casts every
time it is run.

Actually, the numbers are not completely random. They are drawn from very long
sequences of numbers that don’t repeat for a long time. These sequences are com­
puted from fairly simple formulas; they just behave like random numbers. For that
reason, they are often called pseudorandom numbers. Generating good sequences
of numbers that behave like truly random sequences is an important and well-studied
problem in computer science. We won’t investigate this issue further, though; we’ll
just use the random numbers produced by the Random class.

6.9  Application: Random Numbers and Simulations   281

6.9.2  The Monte Carlo Method

The Monte Carlo method is an
ingenious method for finding
approximate solutions to problems
that cannot be precisely solved.
(The method is named after the
famous casino in Monte Carlo.)
Here is a typical example. It is dif­
ficult to compute the number π, but
you can approximate it quite well
with the following simulation.

Simulate shooting a dart into a square surrounding a circle of radius 1. That is easy:
generate random x- and y-coordinates between –1 and 1.

If the generated point lies inside the circle, we count
it as a hit. That is the case when x2 + y2 ≤ 1. Because our
shots are entirely random, we expect that the ratio of hits
/ tries is approximately equal to the ratio of the areas of
the circle and the square, that is, π / 4. Therefore, our
estimate for π is 4 × hits / tries. This method yields an
estimate for π, using nothing but simple arithmetic.

To generate a random floating-point value between –1
and 1, you compute:

double r = generator.nextDouble(); // 0 ≤ r < 1
double x = -1 + 2 * r; // –1 ≤ x < 1

As r ranges from 0 (inclusive) to 1 (exclusive), x ranges from –1 + 2 × 0 = –1 (inclusive)
to –1 + 2 × 1 = 1 (exclusive). In our application, it does not matter that x never reaches
1. The points that fulfill the equation x = 1 lie on a line with area 0.

Here is the program that carries out the simulation:

section_9_2/MonteCarlo.java

1 import java.util.Random;
2
3 /**
4 This program computes an estimate of pi by simulating dart throws onto a square.
5 */
6 public class MonteCarlo
7 {
8 public static void main(String[] args)
9 {

10 final int TRIES = 10000;
11 Random generator = new Random();
12
13 int hits = 0;
14 for (int i = 1; i <= TRIES; i++)
15 {
16 // Generate two random numbers between –1 and 1
17
18 double r = generator.nextDouble();
19 double x = -1 + 2 * r; // Between –1 and 1
20 r = generator.nextDouble();
21 double y = -1 + 2 * r;

© timstarkey/iStockphoto.

x

y

1–1

1

–1

©
 ti

m
st

ar
ke

y/
iS

to
ck

ph
ot

o.

282  Chapter 6  Loops	 Testing Track

22
23 // Check whether the point lies in the unit circle
24
25 if (x * x + y * y <= 1) { hits++; }
26 }
27
28 /*
29 The ratio hits / tries is approximately the same as the ratio
30 circle area / square area = pi / 4
31 */
32
33 double piEstimate = 4.0 * hits / TRIES;
34 System.out.println("Estimate for pi: " + piEstimate);
35 }
36 }

Program Run

Estimate for pi: 3.1504

42.	 How do you simulate a coin toss with the Random class?
43.	 How do you simulate the picking of a random playing card?
44.	 How would you modify the DieSimulator program to simulate tossing a pair

of dice?
45.	 In many games, you throw a pair of dice to get a value between 2 and 12. What is

wrong with this simulated throw of a pair of dice?
int sum = 2 + generator.nextInt(11);

46.	 How do you generate a random floating-point number ≥ 0 and < 100?

Practice It	 Now you can try these exercises at the end of the chapter: R6.31, E6.8, E6.22.

6.10  Using a Debugger
As you have undoubtedly realized by now, computer programs rarely run perfectly
the first time. At times, it can be quite frustrating to find the bugs. Of course, you can
insert print commands, run the program, and try to analyze the printout. If the print­
out does not clearly point to the problem, you may need to add and remove print
commands and run the program again. That can be a time-consuming process.

Modern development environments contain special programs, called debuggers,
that help you locate bugs by letting you follow the execution of a program. You can
stop and restart your program and see the contents of variables whenever your pro­
gram is temporarily stopped. At each stop, you have the choice of what variables to
inspect and how many program steps to run until the next stop.

Some people feel that debuggers are just a tool to make programmers lazy. Admit­
tedly some people write sloppy programs and then fix them up with a debugger, but
the majority of programmers make an honest effort to write the best program they
can before trying to run it through a debugger. These programmers realize that a
debugger, while more convenient than print commands, is not cost-free. It does take
time to set up and carry out an effective debugging session.

In actual practice, you cannot avoid using a debugger. The larger your programs get,
the harder it is to debug them simply by inserting print commands. The time invested
in learning about a debugger will be amply repaid in your programming career.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

A debugger is a
program that you
can use to execute
another program
and analyze its
run-time behavior.

Testing Track 6.10  Using a Debugger   283

Like compilers, debuggers vary widely from one system to another. Some are quite
primitive and require you to memorize a small set of arcane commands; others have
an intuitive window interface. Figure 8 shows the debugger in the Eclipse develop­
ment environment, downloadable for free from the Eclipse Foundation (eclipse.org).
Other development environments, such as BlueJ, Netbeans, and IntelliJ IDEA also
include debuggers.

You will have to find out how to prepare a program for debugging and how to start
a debugger on your system. If you use an integrated development environment (with
an editor, compiler, and debugger), this step is usually easy. You build the program in
the usual way and pick a command to start debugging. On some systems, you must
manually build a debug version of your program and invoke the debugger.

Once you have started the debugger, you can go a long way with just three debug­
ging commands: “set breakpoint”, “single step”, and “inspect variable”. The names
and keystrokes or mouse clicks for these commands differ widely, but all debuggers
support these basic commands. You can find out how, either from the documentation
or a lab manual, or by asking someone who has used the debugger before.

When you start the debugger, it runs at full speed until it reaches a breakpoint.
Then execution stops, and the breakpoint that causes the stop is displayed (Figure 8).
You can now inspect variables and step through the program one line at a time, or
continue running the program at full speed until it reaches the next breakpoint. When
the program terminates, the debugger stops as well.

You can make
effective use of
a debugger by
mastering just
three concepts:
breakpoints, single-
stepping, and
inspecting variables.

When a debugger
executes a program,
the execution is
suspended when-
ever a breakpoint
is reached.

Figure 8 
Stopping at a Breakpoint

284  Chapter 6  Loops	 Testing Track

Figure 9  Inspecting Variables

Breakpoints stay active until you remove them, so you should periodically clear
the breakpoints that you no longer need.

Once the program has stopped, you can look at the current values of variables.
Again, the method for selecting the variables differs among debuggers. Some debug­
gers always show you a window with the current local variables. On other debuggers
you issue a command such as “inspect variable” and type in or click on the variable.
The debugger then displays the contents of the variable. If all variables contain what
you expected, you can run the program until the next point where you want to stop.

When inspecting objects, you often need to give a command to “open up” the
object, for example by clicking on a tree node. Once the object is opened up, you see
its instance variables (see Figure 9).

Running to a breakpoint gets you there speedily, but you don’t know how the
program got there. You can also step through the program one line at a time. Then
you know how the program flows, but it can take a long time to step through it. The
single-step command executes the current line and stops at the next program line.
Most debuggers have two single-step commands, one called step into, which steps
inside method calls, and one called step over, which skips over method calls.

For example, suppose the current line is
String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " + syllables);

When you step over method calls, you get to the next line:
String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " + syllables);

However, if you step into method calls, you enter the first line of the countSyllables
method.

public int countSyllables()
{
 int count = 0;

The single-step
command executes
the program one line
at a time.

Testing Track 6.10  Using a Debugger   285

 int end = text.length() - 1;
 . . .
}

You should step into a method to check whether it carries out its job correctly. You
should step over a method if you know it works correctly.

Finally, when the program has finished running, the debug session is also finished.
To debug the program again, you must restart it in the debugger.

A debugger can be an effective tool for finding and removing bugs in your pro­
gram. However, it is no substitute for good design and careful programming. If the
debugger does not find any errors, it does not mean that your program is bug-free.
Testing and debugging can only show the presence of bugs, not their absence.

47.	 In the debugger, you are reaching a call to System.out.println. Should you step
into the method or step over it?

48.	 In the debugger, you are reaching the beginning of a method with a couple of
loops inside. You want to find out the return value that is computed at the end
of the method. Should you set a breakpoint, or should you step through the
method?

49.	 When using the debugger, you find that a variable has an unexpected value. How
can you go backwards to see when the variable changed?

50.	 When using a debugger, should you insert statements to print the values of
variables?

51.	 Instead of using a debugger, could you simply trace a program by hand?

Practice It	 Now you can try these exercises at the end of the chapter: R6.33, R6.34, R6.35.

Step 1	 Reproduce the error.

As you test your program, you notice that it sometimes does something wrong. It gives the
wrong output, it seems to print something random, it goes in an infinite loop, or it crashes.
Find out exactly how to reproduce that behavior. What numbers did you enter? Where did
you click with the mouse?

Run the program again; type in exactly the same numbers, and click with the mouse on the
same spots (or as close as you can get). Does the program exhibit the same behavior? If so, then
it makes sense to fire up a debugger to study this particular problem. Debuggers are good for
analyzing particular failures. They aren’t terribly useful for studying a program in general.

Step 2	 Simplify the error.

Before you start up a debugger, it makes sense to spend a few minutes trying to come up with a
simpler input that also produces an error. Can you use shorter words or simpler numbers and
still have the program misbehave? If so, use those values during your debugging session.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© Steve Simzer/iStockphoto.

How To 6.2	 Debugging

Knowing all about the mechanics of debugging may still leave you helpless when you fire up a
debugger to look at a sick program. This How To presents a number of strategies that you can
use to recognize bugs and their causes.

286  Chapter 6  Loops	 Testing Track

Step 3	 Divide and conquer.

Now that you have a particular failure, you want to get as close to the failure as possible. The
key point of debugging is to locate the code that produces the failure. Just as with real insect
pests, finding the bug can be hard, but once you find it, squashing it is usually the easy part.
Suppose your program dies with a division by 0. Because there are many division operations
in a typical program, it is often not feasible to set breakpoints to all of them. Instead, use a
technique of divide and conquer. Step over the methods in main, but don’t step inside them.
Eventually, the failure will happen again. Now you know which method contains the bug: It is
the last method that was called from main before the program died. Restart the debugger and go
back to that line in main, then step inside that method. Repeat the process.

Eventually, you will have pinpointed the line that contains the bad division. Maybe it is
obvious from the code why the denominator is not correct. If not, you need to find the loca-
tion where it is computed. Unfortunately, you can’t go back in the debugger. You need to
restart the program and move to the point where the denominator computation happens.

Step 4	 Know what your program should do.

A debugger shows you what the program does. You must know what the program should do,
or you will not be able to find bugs. Before you trace through a loop, ask yourself how many
iterations you expect the program to make. Before you inspect a variable, ask yourself what
you expect to see. If you have no clue, set aside some time and think first. Have a calculator
handy to make independent computations. When you know what the value should be, inspect
the variable. If the value is what you expected, you must look further for the bug. If the value is
different, you may be on to something. Double-check your computation. If you are sure your
value is correct, find out why your program comes up with a different value.

In many cases, program bugs are the result of simple errors such as loop termination condi-
tions that are off by one. Quite often, however, programs make computational errors. Maybe
they are supposed to add two numbers, but by accident the code was written to subtract them.
Programs don’t make a special effort to ensure that everything is a simple integer (and neither
do real-world problems). You will need to make some calculations with large integers or nasty
floating-point numbers. Sometimes these calculations can be avoided if you just ask yourself,
“Should this quantity be positive? Should it be larger than that value?” Then inspect variables
to verify those theories.

Step 5	 Look at all details.

When you debug a program, you often have a theory about what the problem is. Nevertheless,
keep an open mind and look at all details. What strange messages are displayed? Why does the
program take another unexpected action? These details count. When you run a debugging ses-
sion, you really are a detective who needs to look at every clue available.

If you notice another failure on the way to the problem that you are about to pin down,
don’t just say, “I’ll come back to it later”. That very failure may be the original cause for your
current problem. It is better to make a note of the current problem, fix what you just found,
and then return to the original mission.

Step 6	 Make sure you understand each bug before you fix it.

Once you find that a loop makes too many iterations, it is very tempting to apply a “Band-
Aid” solution and subtract 1 from a variable so that the particular problem doesn’t appear
again. Such a quick fix has an overwhelming probability of creating trouble elsewhere. You
really need to have a thorough understanding of how the program should be written before
you apply a fix.

It does occasionally happen that you find bug after bug and apply fix after fix, and the
problem just moves around. That usually is a symptom of a larger problem with the program
logic. There is little you can do with the debugger. You must rethink the program design and
reorganize it.

Use the divide-and-
conquer technique
to locate the point of
failure of a program.

During debugging,
compare the actual
contents of variables
against the values
you know they
should have.

Testing Track 	 Chapter Summary  287

Computing & Society 6.2  The First Bug

Explain the flow of execution in a loop.

•	 A loop executes instructions repeatedly while a
condition is true.

•	 An off-by-one error is a common error when
programming loops. Think through simple test
cases to avoid this type of error.

Use the technique of hand-tracing to analyze the behavior of a program.

•	 Hand-tracing is a simulation of code execution in which you step
through instructions and track the values of the variables.

•	 Hand-tracing can help you understand how an unfamiliar algo­
rithm works.

•	 Hand-tracing can show errors in code or pseudocode.

© Tom Horyn/iStockphoto.

Worked Example 6.3	 A Sample Debugging Session

Learn how to find bugs in an algorithm for counting the
syllables of a word. Go to wiley.com/go/bjeo6examples and
download Worked Example 6.3.

© Mark Poprocki/iStockphoto.

© Alex Slobodkin/iStockphoto.

According to legend,
the first bug was

found in the Mark II, a huge electrome
chanical computer at Harvard Univer
sity. It really was caused by a bug—a
moth was trapped in a relay switch.

Actually, from the note that the
operator left in the log book next to
the moth (see the photo), it appears as
if the term “bug” had already been in
active use at the time.

The First Bug

The pioneering computer scientist
Maurice Wilkes wrote, “Somehow, at
the Moore School and afterwards, one
had always assumed there would be no
particular difficulty in getting programs

right. I can remember the exact instant
in time at which it dawned on me that
a great part of my future life would
be spent finding mistakes in my own
programs.”

© Media Bakery.

Courtesy of the Naval Surface Warfare Center, Dahlgren, VA, 1988. NHHC Collection.

C H A P T E R S U M M A R Y

© mmac72/iStockphoto.

© thomasd007/iStockphoto.

©
 M

ar
k

Po
pr

oc
ki

/
iS

to
ck

ph
ot

o.
C

ou
rt

es
y

of
 th

e
N

av
al

 S
ur

fa
ce

 W
ar

fa
re

 C
en

te
r,

D

ah
lg

re
n,

 V
A

, 1
98

8.
 N

H
H

C
 C

ol
le

ct
io

n.

288  Chapter 6  Loops

Use for loops for implementing count-controlled loops.

•	 The for loop is used when a value runs from a starting point to an ending point
with a constant increment or decrement.

Choose between the while loop and the do loop.

•	 The do loop is appropriate when the loop body must be executed at least once.

Implement loops that read sequences of input data.

•	 A sentinel value denotes the end of a data set, but it is not part of
the data.

•	 You can use a Boolean variable to control a loop. Set the
variable to true before entering the loop, then set it to false to
leave the loop.

•	 Use input redirection to read input from a file. Use output
redirection to capture program output in a file.

Use the technique of storyboarding for planning user interactions.

•	 A storyboard consists of annotated sketches for each step in an action sequence.
•	 Developing a storyboard helps you understand the inputs and outputs that are

required for a program.

Know the most common loop algorithms.

•	 To compute an average, keep a total and a count of all values.
•	 To count values that fulfill a condition, check all values and increment a counter

for each match.
•	 If your goal is to find a match, exit the loop when the match is found.
•	 To find the largest value, update the largest value seen so far whenever you see a

larger one.
•	 To compare adjacent inputs, store the preceding input in a variable.

Use nested loops to implement multiple levels of iteration.

•	 When the body of a loop contains another loop, the loops are nested. A typical
use of nested loops is printing a table with rows and columns.

Apply loops to the implementation of simulations.

•	 In a simulation, you use the computer to simulate an activity.
•	 You can introduce randomness by calling the random number

generator.

© Enrico Fianchini/iStockphoto.

© Rhoberazzi/iStockphoto.

© Hiob/iStockphoto.

© davejkahn/iStockphoto.

© ktsimage/iStockphoto.

Review Exercises  289

Use a debugger to analyze your programs.

•	 A debugger is a program that you can use to execute another program
and analyze its run-time behavior. 

•	 You can make effective use of a debugger by mastering just three concepts:
breakpoints, single-stepping, and inspecting variables. 

•	 When a debugger executes a program, the execution is suspended whenever a
breakpoint is reached. 

•	 The single-step command executes the program one line at a time. 
•	 Use the divide-and-conquer technique to locate the point of failure of a program. 
•	 During debugging, compare the actual contents of variables against the values

you know they should have. 

• R6.1	 Given the variables
String stars = "*****";
String stripes = "=====";

what do these loops print?
a.	int i = 0;

while (i < 5)
{
 System.out.println(stars.substring(0, i));
 i++;
}

b.	int i = 0;
while (i < 5)
{
 System.out.print(stars.substring(0, i));
 System.out.println(stripes.substring(i, 5));
 i++;
}

c.	int i = 0;
while (i < 10)
{
 if (i % 2 == 0) { System.out.println(stars); }
 else { System.out.println(stripes); }
}

• R6.2	 What do these loops print?
a.	int i = 0; int j = 10;

while (i < j) { System.out.println(i + " " + j); i++; j--; }

b.	int i = 0; int j = 10;
while (i < j) { System.out.println(i + j); i++; j++; }

java.util.Random
 nextDouble
 nextInt

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

R E V I E W E X E R C I S E S

290  Chapter 6  Loops

• R6.3	 What do these code snippets print?
a.	int result = 0;

for (int i = 1; i <= 10; i++) { result = result + i; }
System.out.println(result);

b.	int result = 1;
for (int i = 1; i <= 10; i++) { result = i - result; }
System.out.println(result);

c.	int result = 1;
for (int i = 5; i > 0; i--) { result = result * i; }
System.out.println(result);

d.	int result = 1;
for (int i = 1; i <= 10; i = i * 2) { result = result * i; }
System.out.println(result);

• R6.4	 Write a while loop that prints
a.	All squares less than n. For example, if n is 100, print 0 1 4 9 16 25 36 49 64 81.
b.	All positive numbers that are divisible by 10 and less than n. For example, if n is

100, print 10 20 30 40 50 60 70 80 90.
c.	All powers of two less than n. For example, if n is 100, print 1 2 4 8 16 32 64.

•• R6.5	 Write a loop that computes
a.	The sum of all even numbers between 2 and 100 (inclusive).
b.	The sum of all squares between 1 and 100 (inclusive).
c.	The sum of all odd numbers between a and b (inclusive).
d.	The sum of all odd digits of n. (For example, if n is 32677, the sum would

be 3 + 7 + 7 = 17.)

• R6.6	 Provide trace tables for these loops.
a.	int i = 0; int j = 10; int n = 0;

while (i < j) { i++; j--; n++; }

b.	int i = 0; int j = 0; int n = 0;
while (i < 10) { i++; n = n + i + j; j++; }

c.	int i = 10; int j = 0; int n = 0;
while (i > 0) { i--; j++; n = n + i - j; }

d.	int i = 0; int j = 10; int n = 0;
while (i != j) { i = i + 2; j = j - 2; n++; }

• R6.7	 What do these loops print?
a.	for (int i = 1; i < 10; i++) { System.out.print(i + " "); }
b.	for (int i = 1; i < 10; i += 2) { System.out.print(i + " "); }
c.	for (int i = 10; i > 1; i--) { System.out.print(i + " "); }
d.	for (int i = 0; i < 10; i++) { System.out.print(i + " "); }
e.	for (int i = 1; i < 10; i = i * 2) { System.out.print(i + " "); }
f.	 for (int i = 1; i < 10; i++) { if (i % 2 == 0) { System.out.print(i + " "); } }

• R6.8	 What is an infinite loop? On your computer, how can you terminate a program that
executes an infinite loop?

• R6.9	 Write a program trace for the pseudocode in Exercise E6.7, assuming the input
values are  4  7  –2  –5  0.

Review Exercises  291

•• R6.10	 What is an “off-by-one” error? Give an example from your own programming
experience.

• R6.11	 What is a sentinel value? Give a simple rule when it is appropriate to use a numeric
sentinel value.

• R6.12	 Which loop statements does Java support? Give simple rules for when to use each
loop type.

• R6.13	 How many iterations do the following loops carry out? Assume that i is not
changed in the loop body.

a.	for (int i = 1; i <= 10; i++) . . .
b.	for (int i = 0; i < 10; i++) . . .
c.	for (int i = 10; i > 0; i--) . . .
d.	for (int i = -10; i <= 10; i++) . . .
e.	for (int i = 10; i >= 0; i++) . . .
f.	 for (int i = -10; i <= 10; i = i + 2) . . .
g.	for (int i = -10; i <= 10; i = i + 3) . . .

•• R6.14	 Write pseudocode for a program that prints a calendar such as the following.
Su M T W Th F Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

• R6.15	 Write pseudocode for a program that prints a Celsius/Fahrenheit conversion table
such as the following.

Celsius | Fahrenheit
--------+-----------
 0 | 32
 10 | 50
 20 | 68

 100 | 212

• R6.16	 Write pseudocode for a program that reads a student record, consisting of the stu­
dent’s first and last name, followed by a sequence of test scores and a sentinel of –1.
The program should print the student’s average score. Then provide a trace table for
this sample input:

Harry Morgan 94 71 86 95 -1

•• R6.17	 Write pseudocode for a program that reads a sequence of student records and prints
the total score for each student. Each record has the student’s first and last name,
followed by a sequence of test scores and a sentinel of –1. The sequence is terminated
by the word END. Here is a sample sequence:

Harry Morgan 94 71 86 95 -1
Sally Lin 99 98 100 95 90 -1
END

Provide a trace table for this sample input.

292  Chapter 6  Loops

• R6.18	 Rewrite the following for loop into a while loop.
int s = 0;
for (int i = 1; i <= 10; i++)
{
 s = s + i;
}

• R6.19	 Rewrite the following do loop into a while loop.
int n = in.nextInt();
double x = 0;
double s;
do
{
 s = 1.0 / (1 + n * n);
 n++;
 x = x + s;
}
while (s > 0.01);

• R6.20	 Provide trace tables of the following loops.
a.	int s = 1;

int n = 1;
while (s < 10) { s = s + n; }
n++;

b.	int s = 1;
for (int n = 1; n < 5; n++) { s = s + n; }

c.	int s = 1;
int n = 1;
do
{
 s = s + n;
 n++;
}
while (s < 10 * n);

• R6.21	 What do the following loops print? Work out the answer by tracing the code, not by
using the computer.

a.	int s = 1;
for (int n = 1; n <= 5; n++)
{
 s = s + n;
 System.out.print(s + " ");
}

b.	int s = 1;
for (int n = 1; s <= 10; System.out.print(s + " "))
{
 n = n + 2;
 s = s + n;
}

c.	int s = 1;
int n;
for (n = 1; n <= 5; n++)
{
 s = s + n;
 n++;
}
System.out.print(s + " " + n);

Review Exercises  293

• R6.22	 What do the following program segments print? Find the answers by tracing the
code, not by using the computer.

a.	int n = 1;
for (int i = 2; i < 5; i++) { n = n + i; }
System.out.print(n);

b.	int i;
double n = 1 / 2;
for (i = 2; i <= 5; i++) { n = n + 1.0 / i; }
System.out.print(i);

c.	double x = 1;
double y = 1;
int i = 0;
do
{
 y = y / 2;
 x = x + y;
 i++;
}
while (x < 1.8);
System.out.print(i);

d.	double x = 1;
double y = 1;
int i = 0;
while (y >= 1.5)
{
 x = x / 2;
 y = x + y;
 i++;
}
System.out.print(i);

•• R6.23	 Give an example of a for loop where symmetric bounds are more natural. Give an
example of a for loop where asymmetric bounds are more natural.

• R6.24	 Add a storyboard panel for the conversion program in Section 6.6 on page 265 that
shows a scenario where a user enters incompatible units.

• R6.25	 In Section 6.6, we decided to show users a list of all valid units in the prompt. If the
program supports many more units, this approach is unworkable. Give a storyboard
panel that illustrates an alternate approach: If the user enters an unknown unit, a list
of all known units is shown.

• R6.26	 Change the storyboards in Section 6.6 to support a menu that asks users whether
they want to convert units, see program help, or quit the program. The menu should
be displayed at the beginning of the program, when a sequence of values has been
converted, and when an error is displayed.

• R6.27	 Draw a flow chart for a program that carries out unit conversions as described in
Section 6.6.

•• R6.28	 In Section 6.7.5, the code for finding the largest and smallest input initializes the
largest and smallest variables with an input value. Why can’t you initialize them
with zero?

• R6.29	 What are nested loops? Give an example where a nested loop is typically used.

294  Chapter 6  Loops

•• R6.30	 The nested loops
for (int i = 1; i <= height; i++)
{
 for (int j = 1; j <= width; j++) { System.out.print("*"); }
 System.out.println();
}

display a rectangle of a given width and height, such as

Write a single for loop that displays the same rectangle.

•• R6.31	 Suppose you design an educational game to teach children how to read a clock. How
do you generate random values for the hours and minutes?

••• R6.32	 In a travel simulation, Harry will visit one of his friends that are located in three
states. He has ten friends in California, three in Nevada, and two in Utah. How do
you produce a random number between 1 and 3, denoting the destination state, with
a probability that is proportional to the number of friends in each state?

• Testing R6.33	 Explain the differences between these debugger operations:
•	 Stepping into a method
•	 Stepping over a method

•• Testing R6.34	 Explain in detail how to inspect the string stored in a String object in your debugger.

•• Testing R6.35	 Explain in detail how to inspect the information stored in a Rectangle object in your
debugger.

•• Testing R6.36	 Explain in detail how to use your debugger to inspect the balance stored in a Bank–
Account object.

•• Testing R6.37	 Explain the divide-and-conquer strategy to get close to a bug in a debugger.

• E6.1	 Write a program that reads an initial investment balance and an interest rate, then
prints the number of years it takes for the investment to reach one million dollars.

• E6.2	 Write programs with loops that compute
a.	The sum of all even numbers between 2 and 100 (inclusive).
b.	The sum of all squares between 1 and 100 (inclusive).
c.	All powers of 2 from 20 up to 220.
d.	The sum of all odd numbers between a and b (inclusive), where a and b

are inputs.
e.	The sum of all odd digits of an input. (For example, if the input is 32677, the

sum would be 3 + 7 + 7 = 17.)

•• E6.3	 Write programs that read a sequence of integer inputs and print
a.	The smallest and largest of the inputs.
b.	The number of even and odd inputs.

P R A C T I C E E X E R C I S E S

Practice Exercises  295

c.	Cumulative totals. For example, if the input is 1 7 2 9, the program should print
1 8 10 19.

d.	All adjacent duplicates. For example, if the input is 1 3 3 4 5 5 6 6 6 2, the
program should print 3 5 6.

•• E6.4	 Write programs that read a line of input as a string and print
a.	Only the uppercase letters in the string.
b.	Every second letter of the string.
c.	The string, with all vowels replaced by an underscore.
d.	The number of vowels in the string.
e.	The positions of all vowels in the string.

•• E6.5	 Complete the program in How To 6.1 on page 272. Your program should read
twelve temperature values and print the month with the highest temperature.

•• E6.6	 Write a program that reads a set of floating-point values. Ask the user to enter the
values (prompting only a single time for the values), then print

•	 the average of the values.
•	 the smallest of the values.
•	 the largest of the values.
•	 the range, that is the difference between the smallest and largest.

Your program should use a class DataSet. That class should have a method
public void add(double value)

and methods getAverage, getSmallest, getLargest, and getRange.

• E6.7	 Translate the following pseudocode for finding the minimum value from a set of
inputs into a Java program.

Set a Boolean variable “first” to true.
While another value has been read successfully
	 If first is true
		 Set the minimum to the value.
		 Set first to false.
	 Else if the value is less than the minimum
		 Set the minimum to the value.
Print the minimum.

••• E6.8	 Translate the following pseudocode for randomly permuting the characters in a
string into a Java program.

Read a word.
Repeat word.length() times
	 Pick a random position i in the word, but not the last position.
	 Pick a random position j > i in the word.
	 Swap the letters at positions j and i.
Print the word.

To swap the letters, construct substrings as follows:

first middle lasti j

© Anthony Rosenberg/iStockphoto.

©
 A

nt
ho

ny
 R

os
en

be
rg

/iS
to

ck
ph

ot
o.

296  Chapter 6  Loops

Then replace the string with
first + word.charAt(j) + middle + word.charAt(i) + last

• E6.9	 Write a program that reads a word and prints each character of the word on a sepa­
rate line. For example, if the user provides the input "Harry", the program prints

H
a
r
r
y

•• E6.10	 Write a program that reads a word and prints the word in reverse. For example, if the
user provides the input "Harry", the program prints

yrraH

• E6.11	 Write a program that reads a word and prints the number of vowels in the word. For
this exercise, assume that a e i o u y are vowels. For example, if the user provides the
input "Harry", the program prints 2 vowels.

••• E6.12	 Write a program that reads a word and prints all substrings, sorted by length. For
example, if the user provides the input "rum", the program prints

r
u
m
ru
um
rum

• E6.13	 Write a program that prints all powers of 2 from 20 up to 220.

•• E6.14	 Write a program that reads a number and prints all of its binary digits: Print the
remainder number % 2, then replace the number with number / 2. Keep going until the
number is 0. For example, if the user provides the input 13, the output should be

1
0
1
1

• E6.15	 Using the Picture class from Worked Example 6.2, apply a sunset effect to a picture,
increasing the red value of each pixel by 30 percent (up to a maximum of 255).

•• E6.16	 Using the Picture class from Worked Example 6.2, apply a “telescope” effect, turn­
ing all pixels black that are outside a circle. The center of the circle should be the
image center, and the radius should be 40 percent of the width or height, whichever
is smaller.

© Cay Horstmann

C
ay

 H
or

st
m

an
n.

Practice Exercises  297

• E6.17	 Write a program that prints a multiplication table, like this:
 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 . . .
 10 20 30 40 50 60 70 80 90 100

•• E6.18	 Write a program that reads an integer and displays, using asterisks, a filled and
hollow square, placed next to each other. For example, if the side length is 5, the
program should display

***** *****
***** * *
***** * *
***** * *
***** *****

•• E6.19	 Write a program that reads an integer and displays, using asterisks, a filled diamond
of the given side length. For example, if the side length is 4, the program should
display

 *

 *

•• Business E6.20	 Currency conversion. Write a program that first
asks the user to type today’s price for one dollar
in Japanese yen, then reads U.S. dollar values
and converts each to yen. Use 0 as a sentinel.

•• Business E6.21	 Write a program that first asks the user to type
in today’s price of one dollar in Japanese yen,
then reads U.S. dollar values and converts each
to Japanese yen. Use 0 as the sentinel value to denote the end of dollar inputs. Then
the program reads a sequence of yen amounts and converts them to dollars. The
second sequence is terminated by another zero value.

•• E6.22	 The Monty Hall Paradox. Marilyn vos Savant described the following problem
(loosely based on a game show hosted by Monty Hall) in a popular magazine:
“Suppose you’re on a game show, and you’re given the choice of three doors: Behind
one door is a car; behind the others, goats. You pick a door, say No. 1, and the host,
who knows what’s behind the doors, opens another door, say No. 3, which has a
goat. He then says to you, “Do you want to pick door No. 2?” Is it to your advan­
tage to switch your choice?”
Ms. vos Savant proved that it is to your advantage, but many of her readers, includ­
ing some mathematics professors, disagreed, arguing that the probability would not
change because another door was opened.
Your task is to simulate this game show. In each iteration, randomly pick a door
number between 1 and 3 for placing the car. Randomly have the player pick a door.
Randomly have the game show host pick a door having a goat (but not the door that
the player picked). Increment a counter for strategy 1 if the player wins by switching

© hatman12/iStockphoto.

©
 h

at
m

an
12

/iS
to

ck
ph

ot
o.

298  Chapter 6  Loops

to the third door, and increment a counter for strategy 2 if the player wins by
sticking with the original choice. Run 1,000 iterations and print both counters.

•• P6.1	 Enhance Worked Example 6.1 to check that the credit card number is valid. A valid
credit card number will yield a result divisible by 10 when you:
Form the sum of all digits. Add to that sum every second digit, starting with the
second digit from the right. Then add the number of digits in the second step that are
greater than four. The result should be divisible by 10.
For example, consider the number 4012 8888 8888 1881. The sum of all digits is 89.
The sum of the colored digits is 46. There are five colored digits larger than four, so
the result is 140. 140 is divisible by 10 so the card number is valid.

•• P6.2	 Mean and standard deviation. Write a program that reads a set of floating-point data
values. Choose an appropriate mechanism for prompting for the end of the data set.
When all values have been read, print out the count of the values, the average, and
the standard deviation. The average of a data set {x1, . . ., xn} is x x ni= ∑ , where
∑ = + +x x xi n1

… is the sum of the input values. The standard deviation is

s
x x

n
i=

−()
−

∑ 2

1

However, this formula is not suitable for the task. By the time the program has
computed x, the individual xi are long gone. Until you know how to save these
values, use the numerically less stable formula

s
x x

n
i n i=

− ()
−

∑∑ 2 1 2

1

You can compute this quantity by keeping track of the count, the sum, and the sum
of squares as you process the input values.
Your program should use a class DataSet. That class should have a method

public void add(double value)

and methods getAverage and getStandardDeviation.

•• P6.3	 The Fibonacci numbers are defined by the sequence

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

Reformulate that as
fold1 = 1;
fold2 = 1;
fnew = fold1 + fold2;

After that, discard fold2, which is no longer needed, and set fold2 to fold1 and fold1 to
fnew. Repeat an appropriate number of times.

P R O G R A M M I N G P R O J E C T S

© GlobalP/iStockphoto.Fibonacci numbers describe the
growth of a rabbit population.

©
 G

lo
ba

lP
/iS

to
ck

ph
ot

o.

Programming Projects  299

Implement a program that prompts the user for an integer n and prints the nth
Fibonacci number, using the above algorithm.

••• P6.4	 Factoring of integers. Write a program that asks the user for an integer and then
prints out all its factors. For example, when the user enters 150, the program should
print

2
3
5
5

Use a class FactorGenerator with a constructor FactorGenerator(int numberToFactor) and
methods nextFactor and hasMoreFactors. Supply a class FactorPrinter whose main
method reads a user input, constructs a FactorGenerator object, and prints the factors.

••• P6.5	 Prime numbers. Write a program that prompts the user for an integer and then prints
out all prime numbers up to that integer. For example, when the user enters 20, the
program should print

2
3
5
7
11
13
17
19

Recall that a number is a prime number if it is not divisible by any number except 1
and itself.
Use a class PrimeGenerator with methods nextPrime and isPrime. Supply a class Prime-
Printer whose main method reads a user input, constructs a PrimeGenerator object, and
prints the primes.

••• P6.6	 The game of Nim. This is a well-known game with a number of variants. The fol
lowing variant has an interesting winning strategy. Two players alternately take
marbles from a pile. In each move, a player chooses how many marbles to take. The
player must take at least one but at most half of the marbles. Then the other player
takes a turn. The player who takes the last marble loses.
Write a program in which the computer plays against a human opponent. Generate a
random integer between 10 and 100 to denote the initial size of the pile. Generate a
random integer between 0 and 1 to decide whether the computer or the human takes
the first turn. Generate a random integer between 0 and 1 to decide whether the
computer plays smart or stupid. In stupid mode the computer simply takes a random
legal value (between 1 and n / 2) from the pile whenever it has a turn. In smart mode
the computer takes off enough marbles to make the size of the pile a power of two
minus 1—that is, 3, 7, 15, 31, or 63. That is always a legal move, except when the size
of the pile is currently one less than a power of two. In that case, the computer makes
a random legal move.
You will note that the computer cannot be beaten in smart mode when it has the first
move, unless the pile size happens to be 15, 31, or 63. Of course, a human player who
has the first turn and knows the winning strategy can win against the computer.

•• P6.7	 The Drunkard’s Walk. A drunkard in a grid of streets randomly picks one of four
directions and stumbles to the next intersection, then again randomly picks one of

300  Chapter 6  Loops

four directions, and so on. You might think that on average the drunkard doesn’t
move very far because the choices cancel each other out, but that is not the case.
Represent locations as integer pairs (x, y). Implement the drunkard’s walk over 100
intersections, starting at (0, 0), and print the ending location.

• P6.8	 A simple random generator is obtained by the formula

r a r b mnew old= ⋅ +()%
and then setting rold to rnew. If m is chosen as 232, then you can compute

r a r bnew old= ⋅ +

because the truncation of an overflowing result to the int type is equivalent to
computing the remainder.
Write a program that asks the user to enter a value for rold. (Such a value is often
called a seed). Then print the first 100 random integers generated by this formula,
using a = 32310901 and b = 1729.

•• P6.9	 The Buffon Needle Experiment. The following experiment was devised by Comte
Georges-Louis Leclerc de Buffon (1707–1788), a French naturalist. A needle of
length 1 inch is dropped onto paper that is ruled with lines 2 inches apart. If the
needle drops onto a line, we count it as a hit. (See Figure 10.) Buffon discovered that
the quotient tries/hits approximates π.
For the Buffon needle experiment, you must generate two random numbers: one to
describe the starting position and one to describe the angle of the needle with the
x-axis. Then you need to test whether the needle touches a grid line.
Generate the lower point of the needle. Its x-coordinate is irrelevant, and you may
assume its y-coordinate ylow to be any random number between 0 and 2. The angle α
between the needle and the x-axis can be any value between 0 degrees and 180
degrees (π radians). The upper end of the needle has y-coordinate

y yhigh low= + sinα

The needle is a hit if yhigh is at least 2, as shown in Figure 11. Stop after 10,000 tries
and print the quotient tries/hits. (This program is not suitable for computing the
value of π. You need π in the computation of the angle.)

•• P6.10	 In the 17th century, the discipline of probability theory got its start when a gambler
asked a mathematician friend to explain some observations about dice games. Why
did he, on average, lose a bet that at least one six would appear when rolling a die
four times? And why did he seem to win a similar bet, getting at least one double-six
when rolling a pair of dice 24 times?

Figure 10 
The Buffon Needle Experiment

Figure 11 
A Hit in the Buffon Needle Experiment

2

0

yhigh

ylow α

Programming Projects  301

Nowadays, it seems astounding that any person would roll a pair of dice 24 times in
a row, and then repeat that many times over. Let’s do that experiment on a computer
instead. Simulate each game a million times and print out the wins and losses,
assuming each bet was for $1.

•• Business P6.11	 Your company has shares of stock it would like to sell when their value exceeds a
certain target price. Write a program that reads the target price and then reads the
current stock price until it is at least the target price. Your program should use a
Scanner to read a sequence of double values from standard input. Once the minimum
is reached, the program should report that the stock price exceeds the target price.

•• Business P6.12	 Write an application to pre-sell a limited number of cinema tickets. Each buyer can
buy as many as 4 tickets. No more than 100 tickets can be sold. Implement a pro-
gram called TicketSeller that prompts the user for the desired number of tickets and
then displays the number of remaining tickets. Repeat until all tickets have been
sold, and then display the total number of buyers.

•• Business P6.13	 You need to control the number of people who can be in an oyster bar at the same
time. Groups of people can always leave the bar, but a group cannot enter the bar
if they would make the number of people in the bar exceed the maximum of 100
occupants. Write a program that reads the sizes of the groups that arrive or depart.
Use negative numbers for departures. After each input, display the current number
of occupants. As soon as the bar holds the maximum number of people, report that
the bar is full and exit the program.

•• Science P6.14	 In a predator-prey simulation, you compute the populations of predators and prey,
using the following equations:

prey prey A B pred

pred pred C D
n n n

n n

+

+

= × + − ×()
= × − + ×

1

1

1

1 ppreyn()
Here, A is the rate at which prey birth exceeds natural death, B is the rate of preda-
tion, C is the rate at which predator deaths exceed births without food, and D
represents predator increase in the presence of food.
Write a program that prompts users for these rates, the initial population sizes, and
the number of periods. Then print the populations for the given number of periods.
As inputs, try A = 0.1, B = C = 0.01, and D = 0.00002 with initial prey and predator
populations of 1,000 and 20.

•• Science P6.15	 Projectile flight. Suppose a cannonball is propelled straight into the air with a
starting velocity v0. Any calculus book will state that the position of the ball after t
seconds is s t gt v t() = − +1

2
2

0 , where =g 9.81 m s2 is the gravitational force of the
earth. No calculus textbook ever states why someone would want to carry out such
an obviously dangerous experiment, so we will do it in the safety of the computer.
In fact, we will confirm the theorem from
calculus by a simulation. In our simulation, we
will consider how the ball moves in very short
time intervals Δt. In a short time interval the
velocity v is nearly constant, and we can com-
pute the distance the ball moves as Δs = vΔt. In
our program, we will simply set

const double DELTA_T = 0.01;

© Charles Gibson/iStockphoto.

© MOF/iStockphoto.

©
 C

ha
rl

es
 G

ib
so

n/
iS

to
ck

ph
ot

o.

©
 M

O
F

/iS
to

ck
ph

ot
o.

302  Chapter 6  Loops

and update the position by
s = s + v * DELTA_T;

The velocity changes constantly—in fact, it is reduced by the gravitational force of
the earth. In a short time interval, Δv = –gΔt, we must keep the velocity updated as

v = v - g * DELTA_T;

In the next iteration the new velocity is used to update the distance.
Now run the simulation until the cannonball falls back to the earth. Get the initial
velocity as an input (100 m/s is a good value). Update the position and velocity 100
times per second, but print out the position only every full second. Also printout the
values from the exact formula s t gt v t() = − +1

2
2

0 for comparison.
Note: You may wonder whether there is a benefit to this simulation when an exact
formula is available. Well, the formula from the calculus book is not exact. Actually,
the gravitational force diminishes the farther the cannonball is away from the surface
of the earth. This complicates the algebra sufficiently that it is not possible to give an
exact formula for the actual motion, but the computer simulation can simply be
extended to apply a variable gravitational force. For cannonballs, the calculus-book
formula is actually good enough, but computers are necessary to compute accurate
trajectories for higher-flying objects such as ballistic missiles.

••• Science P6.16	 A simple model for the hull of a ship is given by

y
B x

L
z
T

= − ⎛
⎝⎜

⎞
⎠ ⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− ⎛
⎝⎜

⎞
⎠ ⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

1
2

1
2 2

where B is the beam, L is the length, and T is the draft. (Note: There are two values
of y for each x and z because the hull is symmetric from starboard to port.)

Courtesy of James P. Holloway, John Wiley & Sons, Inc.

The cross-sectional area at a point x is called the “section” in nauti-
cal parlance. To compute it, let z go from 0 to –T in n increments,
each of size T n. For each value of z, compute the value for y.
Then sum the areas of trapezoidal strips. At right are the strips
where n = 4.
Write a program that reads in values for B, L, T, x, and n and then
prints out the cross-sectional area at x.

Courtesy of James P. Holloway, John Wiley & Sons, Inc.

(l
ef

t a
nd

 b
el

ow
)

C
ou

rt
es

y
of

 J
am

es
 P

. H
ol

lo
w

ay
/

Jo
hn

 W
ile

y
&

 S
on

s,
In

c.

Programming Projects  303

• Science P6.17	 Radioactive decay of radioactive materials can be
modeled by the equation A = A0e-t (log 2/h), where A is
the amount of the material at time t, A0 is the amount
at time 0, and h is the half-life.
Technetium-99 is a radioisotope that is used in imaging
of the brain. It has a half-life of 6 hours. Your program
should display the relative amount A / A0 in a patient
body every hour for 24 hours after receiving a dose.

••• Science P6.18	 The photo at left shows an electric device called a “transformer”. Transformers are
often constructed by wrapping coils of wire around a ferrite core. The figure below
illustrates a situation that occurs in
various audio devices such as cell
phones and music players. In this
circuit, a transformer is used to
connect a speaker to the output of
an audio amplifier.
The symbol used to represent the
transformer is intended to suggest
two coils of wire. The parameter n of the transformer is called the “turns ratio” of
the transformer. (The number of times that a wire is wrapped around the core to
form a coil is called the number of turns in the coil. The turns ratio is literally the
ratio of the number of turns in the two coils of wire.)
When designing the circuit, we are concerned primarily with the value of the power
delivered to the speakers—that power causes the speakers to produce the sounds we
want to hear. Suppose we were to connect the speakers directly to the amplifier
without using the transformer. Some fraction of the power available from the
amplifier would get to the speakers. The rest of the available power would be lost in
the amplifier itself. The transformer is added to the circuit to increase the fraction of
the amplifier power that is delivered to the speakers.
The power, Ps, delivered to the speakers is calculated using the formula

P R
nV

n R Rs s
s

s

=
+

⎛

⎝
⎜ ⎜

⎞

⎠
⎟⎟2

0

2

Write a program that models the circuit shown and varies the turns ratio from 0.01 to
2 in 0.01 increments, then determines the value of the turns ratio that maximizes the
power delivered to the speakers.

• Graphics P6.19	 Write a graphical application that displays a checkerboard with 64 squares, alternat
ing white and black.

••• Graphics P6.20	 Write a graphical application that draws a spiral, such as this one:

•• Graphics P6.21	 It is easy and fun to draw graphs of curves with the Java graph-
ics library. Simply draw 100 line segments joining the points (x,
f(x)) and (x + d, f(x + d)), where x ranges from xmin to xmax and
d x x= −()max min 100.
Draw the curve f x x x x() . .= − + +0 00005 0 03 4 2003 2 , where x ranges from 0 to 400
in this fashion.

© Snowleopard1/iStockphoto.

© zig4photo/iStockphoto.

Vs = 40 V

Speaker

+
–

R0 = 20 Ω

Rs = 8 Ω

TransformerAmpli�er

1 : n

©
 S

no
w

le
op

ar
d1

/iS
to

ck
ph

ot
o.

©
 z

ig
4p

ho
to

/iS
to

ck
ph

ot
o.

304  Chapter 6  Loops

••• Graphics P6.22	 Draw a picture of the “four-leaved rose” whose equation in polar coordinates is
r = cos()2θ . Let θ go from 0 to 2π in 100 steps. Each time, compute r and then com­
pute the (x, y) coordinates from the polar coordinates by using the formula

x r y r= ⋅ = ⋅cos() sin()θ θ,

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 23 years.
2.	 8 years.
3.	 Add a statement

System.out.println(balance);

as the last statement in the while loop.
4.	 The program prints the same output. This is

because the balance after 14 years is slightly
below $20,000, and after 15 years, it is slightly
above $20,000.

5.	 2 4 8 16 32 64 128
Note that the value 128 is printed even though
it is larger than 100.

6.	 n output
 5
 4 4
 3 3
 2 2
 1 1
 0 0
-1 -1

7.	 n output
 1 1,
 2 1, 2,
 3 1, 2, 3,
 4

There is a comma after the last value. Usually,
commas are between values only.

8.	 a n r i
 2 4 1 1
 2 2
 4 3
 8 4
 16 5

The code computes an.
9.	 n output

 1 1
11 11
21 21
31 31
41 41
51 51
61 61
...

This is an infinite loop. n is never equal to 50.

10.	 count temp
1 123
2 12.3
3 1.23
This yields the correct answer. The number
123 has 3 digits.

count temp
1 100
2 10.0
This yields the wrong answer. The number 100
also has 3 digits. The loop condition should
have been while (temp >= 10).

11.	 int year = 1;
while (year <= numberOfYears)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
 year++;
}

12.	 11 numbers: 10 9 8 7 6 5 4 3 2 1 0
13.	 for (int i = 10; i <= 20; i = i + 2)

{
 System.out.println(i);
}

14.	 int sum = 0;
for (int i = 1; i <= n; i++)
{
 sum = sum + i;
}

15.	 final int PERIODS = 5;
for (int i = 1; i <= PERIODS; i++)
{
 invest.waitYears(YEARS);
 System.out.printf(
 "The balance after %d years is %.2f\n",
 invest.getYears(), invest.getBalance());
}

16.	 do
{
 System.out.print(
 "Enter an integer between 0 and 100: ");
 value = in.nextInt();
}
while (value < 0 || value > 100);

Answers to Self-Check Questions  305

17.	 int value = 100;
while (value >= 100)
{
 System.out.print("Enter a value < 100: ");
 value = in.nextInt();
}

Here, the variable value had to be initialized
with an artificial value to ensure that the loop
is entered at least once.

18.	 Yes. The do loop
do { body } while (condition);

is equivalent to this while loop:
boolean first = true;
while (first || condition)
{
 body;
 first = false;
}

19.	 int x;
int sum = 0;
do
{
 x = in.nextInt();
 sum = sum + x;
}
while (x != 0);

20.	 int x = 0;
int previous;
do
{
 previous = x;
 x = in.nextInt();
 sum = sum + x;
}
while (x != 0 && previous != x);

21.	 No data

22.	 The first check ends the loop after the sentinel
has been read. The second check ensures that
the sentinel is not processed as an input value.

23.	 The while loop would never be entered. The
user would never be prompted for input.
Because count stays 0, the program would then
print "No data".

24.	 The nextDouble method also returns false.
A more accurate prompt would have been:
“Enter values, a key other than a digit to quit:”
But that might be more confusing to the pro­
gram user who would need to ponder which
key to choose.

25.	 If the user doesn’t provide any numeric input,
the first call to in.nextDouble() will fail.

26.	 Computing the average

27.	 Simple conversion

Unknown unit

Program doesn’t understand question syntax

28.	 One score is not enough

29.	 It would not be possible to implement this
interface using the Java features we have cov­
ered up to this point. There is no way for the
program to know when the first set of inputs
ends. (When you read numbers with value =
in.nextDouble(), it is your choice whether to put
them on a single line or multiple lines.)

30.	 Comparing two interest rates

31.	 The total is zero.
32.	 double total = 0;

while (in.hasNextDouble())
{

Enter scores, Q to quit: 90 80 90 100 80 Q
The average is 88
(Program exits)

Your conversion question: How many in are 30 cm
30 cm = 11.81 in
(Program exits) Run program again for another question

Only one value can be converted

Your conversion question: How many inches are 30 cm?
Unknown unit: inches
Known units are in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal
(Program exits)

Your conversion question: What is an ångström?
Please formulate your question as “How many (unit) are (value) (unit)?”
(Program exits)

Enter scores, Q to quit: 90 Q
Error: At least two scores are required.
(Program exits)

First interest rate in percent: 5
Second interest rate in percent: 10
Years: 5
Year 5% 10%

0 10000.00 10000.00
1 10500.00 11000.00
2 11025.00 12100.00
3 11576.25 13310.00
4 12155.06 14641.00
5 12762.82 16105.10

This row clari�es that 1 means
the end of the �rst year

306  Chapter 6  Loops

 double input = in.nextDouble();
 if (input > 0) { total = total + input; }
}

33.	 position is str.length() and ch is unchanged
from its initial value, '?'. Note that ch must
be initialized with some value—otherwise the
compiler will complain about a possibly unini­
tialized variable.

34.	 The loop will stop when a match is found, but
you cannot access the match because neither
position nor ch are defined outside the loop.

35.	 Start the loop at the end of string:
boolean found = false;
int i = str.length() - 1;
while (!found && i >= 0)
{
 char ch = str.charAt(i);
 if (ch == ' ') { found = true; }
 else { i--; }
}

36.	 The initial call to in.nextDouble() fails, termi­
nating the program. One solution is to do all
input in the loop and introduce a Boolean vari­
able that checks whether the loop is entered for
the first time.
double input = 0;
boolean first = true;
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();
 if (first) { first = false; }
 else if (input == previous)
 {
 System.out.println("Duplicate input");
 }
}

37.	 All values in the inner loop should be dis­
played on the same line.

38.	 Change lines 13, 18, and 30 to for (int n = 0;
n <= NMAX; n++). Change NMAX to 5.

39.	 60: The outer loop is executed 10 times, and
the inner loop 6 times.

40.	 0123
1234
2345

41.	 for (int i = 1; i <= 3; i++)
{
 for (int j = 1; j <= 4; j++)
 {
 System.out.print("[]");
 }
 System.out.println();
}

42.	 Compute generator.nextInt(2), and use 0 for
heads, 1 for tails, or the other way around.

43.	 Compute generator.nextInt(4) and associate
the numbers 0 . . . 3 with the four suits. Then
compute generator.nextInt(13) and associate
the numbers 0 . . . 12 with Jack, Ace, 2 . . . 10,
Queen, and King.

44.	 Construct two Die objects:
Die d1 = new Die(6);
Die d2 = new Die(6);

Then cast and print both of them:
System.out.println(
 d1.cast() + " " + d2.cast());

45.	 The call will produce a value between 2 and
12, but all values have the same probability.
When throwing a pair of dice, the number 7 is
six times as likely as the number 2. The correct
formula is
int sum = generator.nextInt(6)
 + generator.nextInt(6) + 2;

46.	 generator.nextDouble() * 100.0
47.	 You should step over it because you are not

interested in debugging the internals of the
println method.

48.	 You should set a breakpoint. Stepping through
loops can be tedious.

49.	 Unfortunately, most debuggers do not support
going backwards. Instead, you must restart the
program. Try setting breakpoints at the lines in
which the variable is changed.

50.	 No, there is no need. You can just inspect the
variables in the debugger.

51.	 For short programs, you certainly could. But
when programs get longer, it would be very
time-consuming to trace them manually.

Credit Card Processing   WE1

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 1	 Decide what work must be done inside the loop.

In the loop, we visit each character in turn. You can get the ith character as

char ch = creditCardNumber.charAt(i);

If it is not a dash or space, we move on to the next character. If it is a dash or space, we remove
the offending character.

Repeat
	 Set ch to the ith character of creditCardNumber.
	 If ch is a space or dash
		 Remove the character from creditCardNumber.
	 Else
		 Increment i.

You may wonder how to remove a character from a string in Java. Here is the procedure for
removing the character at position i: Take the substrings that end before i and start after i, and
concatenate them.

i

4 1 2 3 - 5 6 7 8 - 9 0 1 2 - 3 4 5 0

before after

String before = creditCardNumber.substring(0, i);
String after = creditCardNumber.substring(i + 1);
creditCardNumber = before + after;

Note that we do not increment i after removing a character. For example, in the figure above,
i was 4, and we removed the dash at position 4. The next time we enter the loop, we want to
reexamine position 4 which now contains the character 5.

Step 2	 Specify the loop condition.

We stay in the loop while the index i is a valid position. That is,

i < creditCardNumber.length()

© Tom Horyn/iStockphoto.

Worked Example 6.1	 Credit Card Processing

One of the minor annoyances of online shopping is that many Web sites require you to enter
a credit card without spaces or dashes, which makes double-checking the number rather
tedious. How hard can it be to remove dashes or spaces from a string? Not hard at all, as this
worked example shows.

Problem Statement  Your task is to remove all spaces or dashes from a string credit-
CardNumber. For example, if creditCardNumber is "4123-5678-9012-3450", then you should set it to
"4123567890123450".

© Alex Slobodkin/iStockphoto.

WE2  Chapter 6  Loops

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 3	 Choose the loop type.

We don’t know at the outset how often the loop is repeated. It depends on the number of
dashes and spaces that we find. Therefore, we will choose a while loop. Why not a do loop? If
we are given an empty string (because the user has not provided any credit card number at all),
we do not want to enter the loop at all.

Step 4	 Process the result after the loop has finished.

In this case, the result is simply the string.

Step 5	 Trace the loop with typical examples.

The complete loop is

i = 0
While i < creditCardNumber.length()
	 ch = the ith character of creditCardNumber.
	 If ch is a space or dash
		 Remove the character from creditCardNumber.
	 Else
		 Increment i.

It is a bit tedious to trace a string with 20 characters, so we will use a shorter example:

 creditCardNumber i ch
 4-56-7 0 4
 4-56-7 1 -
 456-7 1 5
 456-7 2 6
 456-7 3 -
 4567 3 7

Step 6	 Implement the loop in Java.

Here’s the complete program:

worked_example_1/CCNumber.java

1 /**
2 This program removes spaces and dashes from a credit card number.
3 */
4 public class CCNumber
5 {
6 public static void main(String[] args)
7 {
8 String creditCardNumber = "4123-5678-9012-3450";
9

10 int i = 0;
11 while (i < creditCardNumber.length())
12 {
13 char ch = creditCardNumber.charAt(i);
14 if (ch == ' ' || ch == '-')
15 {
16 // Remove the character at position i
17
18 String before = creditCardNumber.substring(0, i);
19 String after = creditCardNumber.substring(i + 1);

Credit Card Processing   WE3

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

20 creditCardNumber = before + after;
21 }
22 else
23 {
24 i++;
25 }
26 }
27
28 System.out.println(creditCardNumber);
29 }
30 }

Manipulating the Pixels in an Image   WE5

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

The implementation of the Picture class uses the Java image library and is beyond the scope of
this book, but here are the relevant parts of the public interface:

public class Picture
{
 . . .
 /**
 Gets the width of this picture.
 @return the width
 */
 public int getWidth() { . . . }

 /**
 Gets the height of this picture.
 @return the height
 */
 public int getHeight() { . . . }

 /**
 Loads a picture from a given source.
 @param source the image source. If the source starts
 with http://, it is a URL, otherwise, a filename.
 */
 public void load(String source) { . . . }

 /**
 Gets the color of a pixel.
 @param x the column index (between 0 and getWidth() - 1)
 @param y the row index (between 0 and getHeight() - 1)
 @return the color of the pixel at position (x, y)
 */
 public Color getColorAt(int x, int y) { . . . }

 /**
 Sets the color of a pixel.
 @param x the column index (between 0 and getWidth() - 1)
 @param y the row index (between 0 and getHeight() - 1)
 @param c the color for the pixel at position (x, y)
 */
 public void setColorAt(int x, int y, Color c) { . . . }

 . . .

© Tom Horyn/iStockphoto.

Worked Example 6.2	 Manipulating the Pixels in an Image

A digital image is made up of pixels. Each pixel is a
tiny square of a given color. In this Worked Exam­
ple, we will use a class Picture that has methods for
loading an image and accessing its pixels.

Problem Statement  Your task is to convert
an image into its negative: turning white to black,
cyan to red, and so on. The result is a negative
image of the kind that old-fashioned film cameras
used to produce.

Cay Horstmann.

© Alex Slobodkin/iStockphoto.

C
ay

 H
or

st
m

an
n.

WE6  Chapter 6  Loops

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

}

Now consider the task of converting an image into its negative. The negative of a Color object
is computed like this:

Color original = ...;
Color negative = new Color(255 - original.getRed(),
 255 - original.getGreen(),
 255 - original.getBlue());

We want to apply this operation to each pixel in the image.
To process all pixels, we can use one of the following two strategies:

For each row
	 For each pixel in the row
		 Process the pixel.
or

For each column
	 For each pixel in the column
		 Process the pixel.

Because our pixel class uses x/y coordinates to access a pixel, it turns out to be more natural to
use the second strategy. (In Chapter 7, you will encounter two-dimensional arrays that are
accessed with row/column coordinates. In that situation, use the first form.)

To traverse each column, the x-coordinate starts at 0. Because there are pic.getWidth()
columns, we use the loop

for (int x = 0; x < pic.getWidth(); x++)

Once a column has been fixed, we need to traverse all y-coordinates in that column, starting
from 0. There are pic.getHeight() rows, so our nested loops are

for (int x = 0; x < pic.getWidth(); x++)
{
 for (int y = 0; y < pic.getHeight(); y++)
 {
 Color original = pic.getColorAt(x, y);
 . . .
 }
}

The following program solves our image manipulation problem:

worked_example_2/Negative.java

1 import java.awt.Color;
2
3 public class Negative
4 {
5 public static void main(String[] args)
6 {
7 Picture pic = new Picture();
8 pic.load("queen-mary.png");
9 for (int x = 0; x < pic.getWidth(); x++)

10 {
11 for (int y = 0; y < pic.getHeight(); y++)
12 {
13 Color original = pic.getColorAt(x, y);
14 Color negative = new Color(255 - original.getRed(),
15 255 - original.getGreen(),
16 255 - original.getBlue());
17 pic.setColorAt(x, y, negative);
18 }

Manipulating the Pixels in an Image   WE7

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

19 }
20 }
21 }

A Sample Debugging Session   WE9

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Here is the source code. There are a couple of bugs in this class.

worked_example_3/Word.java

1 /**
2 This class describes words in a document. There are a couple
3 of bugs in this class.
4 */
5 public class Word
6 {
7 private String text;
8
9 /**

10 Constructs a word by removing leading and trailing non-
11 letter characters, such as punctuation marks.
12 @param s the input string
13 */
14 public Word(String s)
15 {
16 int i = 0;
17 while (i < s.length() && !Character.isLetter(s.charAt(i)))
18 {
19 i++;
20 }
21 int j = s.length() - 1;
22 while (j > i && !Character.isLetter(s.charAt(j)))
23 {
24 j--;
25 }
26 text = s.substring(i, j);
27 }
28
29 /**
30 Returns the text of the word, after removal of the
31 leading and trailing non-letter characters.
32 @return the text of the word
33 */
34 public String getText()
35 {
36 return text;
37 }
38

© Tom Horyn/iStockphoto.

Worked Example 6.3	 A Sample Debugging Session

This Worked Example presents a realistic example for running a debugger by examining a Word
class whose primary purpose is to count the number of syllables in a word.

Problem Statement  The Word class uses this rule for counting syllables:
Each group of adjacent vowels (a, e, i, o, u, y) counts as one syllable (for example, the
“ea” in “peach” contributes one syllable, but the “e . . . o” in “yellow” counts as two
syllables). However, an “e” at the end of a word doesn’t count as a syllable. Each word
has at least one syllable, even if the previous rules give a count of 0.

Also, when you construct a word from a string, any characters at the beginning or end of the
string that aren’t letters are stripped off. That is useful when you read the input using the next
method of the Scanner class. Input strings can still contain quotation marks and punctuation
marks, and we don’t want them as part of the word.

Your task is to find and correct the errors in this program.

© Alex Slobodkin/iStockphoto.

WE10  Chapter 6  Loops

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

39 /**
40 Counts the syllables in the word.
41 @return the syllable count
42 */
43 public int countSyllables()
44 {
45 int count = 0;
46 int end = text.length() - 1;
47 if (end < 0) { return 0; } // The empty string has no syllables
48
49 // An e at the end of the word doesn’t count as a vowel
50 char ch = text.charAt(end);
51 if (ch == 'e' || ch == 'E') { end--; }
52
53 boolean insideVowelGroup = false;
54 for (int i = 0; i <= end; i++)
55 {
56 ch = text.charAt(i);
57 String vowels = "aeiouyAEIOUY";
58 if (vowels.indexOf(ch) >= 0)
59 {
60 // ch is a vowel
61 if (!insideVowelGroup)
62 {
63 // Start of new vowel group
64 count++;
65 insideVowelGroup = true;
66 }
67 }
68 }
69
70 // Every word has at least one syllable
71 if (count == 0) { count = 1; }
72
73 return count;
74 }
75 }

Here is a simple test class. Type in a sentence, and the syllable counts of all words are displayed.

worked_example_3/SyllableCounter.java

1 import java.util.Scanner;
2
3 /**
4 This program counts the syllables of all words in a sentence.
5 */
6 public class SyllableCounter
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11
12 System.out.println("Enter a sentence ending in a period.");
13
14 String input;
15 do
16 {
17 input = in.next();
18 Word w = new Word(input);

A Sample Debugging Session   WE11

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

19 int syllables = w.countSyllables();
20 System.out.println("Syllables in " + input + ": " + syllables);
21 }
22 while (!input.endsWith("."));
23 }
24 }

Supply this input:

Hello yellow peach.

Then the output is

Syllables in Hello: 1
Syllables in yellow: 1
Syllables in peach.: 1

That is not very promising.
First, set a breakpoint in the first line of the countSyllables method of the Word class, in line

43 of Word.java. Then start the program. The program will prompt you for the input. The pro­
gram will stop at the breakpoint you just set.

First, the countSyllables method checks the last character of the word to see if it is a letter
'e'. Let’s just verify that this works correctly. Run the program to line 51 (see Figure 12).

Now inspect the variable ch. This particular debugger has a handy display of all current
local and instance variables—see Figure 13. If yours doesn’t, you may need to inspect ch

Figure 12  Debugging the countSyllables Method

Figure 13 
The Current Values of the
Local and Instance Variables

WE12  Chapter 6  Loops

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

manually. You can see that ch contains the value 'l'. That is strange. Look at the source code.
The end variable was set to text.length() - 1, the last position in the text string, and ch is the
character at that position.

Looking further, you will find that end is set to 3, not 4, as you would expect. And text con­
tains the string "Hell", not "Hello". Thus, it is no wonder that countSyllables returns the answer
1. We’ll need to look elsewhere for the culprit. Apparently, the Word constructor contains an
error.

Unfortunately, a debugger cannot go back in time. Thus, you must stop the debugger, set a
breakpoint in the Word constructor, and restart the debugger. Supply the input once again. The
debugger will stop at the beginning of the Word constructor. The constructor sets two variables
i and j, skipping past any nonletters at the beginning and the end of the input string. Set a
breakpoint past the end of the second loop (see Figure 14) so that you can inspect the values of
i and j.

At this point, inspecting i and j shows that i is 0 and j is 4. That makes sense—there were
no punctuation marks to skip. So why is text being set to "Hell"? Recall that the substring
method counts positions up to, but not including, the second parameter. Thus, the correct call
should be

text = s.substring(i, j + 1);

This is a very typical off-by-one error.

Figure 14  Debugging the Word Constructor

A Sample Debugging Session   WE13

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Fix this error, recompile the program, and try the three test cases again. You will now get
the output

Syllables in Hello: 1
Syllables in yellow: 1
Syllables in peach.: 1

As you can see, there still is a problem. Erase all breakpoints and set a breakpoint in the count-
Syllables method. Start the debugger and supply the input "Hello.". When the debugger stops
at the breakpoint, start single stepping through the lines of the method. Here is the code of the
loop that counts the syllables:

boolean insideVowelGroup = false;
for (int i = 0; i <= end; i++)
{
 ch = text.charAt(i);
 String vowels = "aeiouyAEIOUY";
 if (vowels.indexOf(ch) >= 0)
 {
 // ch is a vowel
 if (!insideVowelGroup)
 {
 // Start of new vowel group
 count++;
 insideVowelGroup = true;
 }
 }
}

In the first iteration through the loop, the debugger skips the if statement. That makes sense,
because the first letter, 'H', isn’t a vowel. In the second iteration, the debugger enters the if
statement, as it should, because the second letter, 'e', is a vowel. The insideVowelGroup variable
is set to true, and the vowel counter is incremented. In the third iteration, the if statement is
again skipped, because the letter 'l' is not a vowel. But in the fifth iteration, something weird
happens. The letter 'o' is a vowel, and the if statement is entered. But the second if statement
is skipped, and count is not incremented again.

Why? The insideVowelGroup variable is still true, even though the first vowel group was
finished when the consonant 'l' was encountered. Reading a consonant should set inside-
VowelGroup back to false. This is a more subtle logic error, but not an uncommon one when
designing a loop that keeps track of the processing state. To fix it, stop the debugger and add
the following clause:

if (vowels.indexOf(ch) >= 0)
{
 . . .
}
else insideVowelGroup = false;

Now recompile and run the test once again. The output is:

Syllables in Hello: 2
Syllables in yellow: 2
Syllables in peach.: 1

Is the program now free from bugs? That is not a question the debugger can answer. Remem­
ber: Testing can show only the presence of bugs, not their absence.

7C H A P T E R

307

ARRAYS AND
ARRAY L ISTS

To collect elements using arrays
and array lists

To use the enhanced for loop for traversing arrays and array lists

To learn common algorithms for processing arrays and array lists

To work with two-dimensional arrays

To understand the concept of regression testing

CHAPTER GOALS

CHAPTER CONTENTS

7.1  ARRAYS  308

SYN 	 Arrays  309
CE 1 	 Bounds Errors  314
CE 2 	 Uninitialized and Unfilled Arrays  314
PT 1 	 Use Arrays for Sequences of

Related Items  314
PT 2 	 Make Parallel Arrays into Arrays of

Objects  314
ST 1 	 Methods with a Variable Number of

Arguments  315
C&S 	 Computer Viruses  316

7.2  THE ENHANCED FOR LOOP  317

SYN 	 The Enhanced for Loop  318

7.3  COMMON ARRAY ALGORITHMS  318

CE3 	 Underestimating the Size of a
Data Set  327

ST 2 	 Sorting with the Java Library  327

7.4  PROBLEM SOLVING: ADAPTING
ALGORITHMS  327

HT 1 	 Working with Arrays  330
WE 1 	 Rolling the Dice 

© Alex Slobodkin/iStockphoto.

7.5  PROBLEM SOLVING: DISCOVERING
ALGORITHMS BY MANIPULATING
PHYSICAL OBJECTS  332

7.6  TWO-DIMENSIONAL ARRAYS  336

SYN 	 Two-Dimensional Array Declaration  337
WE 2 	 A World Population Table 

© Alex Slobodkin/iStockphoto.ST 3 	 Two-Dimensional Arrays with Variable
Row Lengths  341

ST 4 	 Multidimensional Arrays  343

7.7  ARRAY LISTS  343

SYN 	 Array Lists  343
CE 4 	 Length and Size  352
ST 5 	 The Diamond Syntax  352

7.8  REGRESSION TESTING  352

PT 3 	 Batch Files and Shell Scripts  354
C&S 	 The Therac-25 Incidents  355

© traveler1116/iStockphoto.
© traveler1116/iStockphoto.

308

In many programs, you need to collect large numbers of
values. In Java, you use the array and array list constructs
for this purpose. Arrays have a more concise syntax,
whereas array lists can automatically grow to any desired
size. In this chapter, you will learn about arrays, array lists,
and common algorithms for processing them.

7.1  Arrays
We start this chapter by introducing the array data type. Arrays are the fundamental
mechanism in Java for collecting multiple values. In the following sections, you will
learn how to declare arrays and how to access array elements.

7.1.1  Declaring and Using Arrays

Suppose you write a program that reads a sequence of values and prints out the
sequence, marking the largest value, like this:

32
54
67.5
29
35
80
115 <= largest value	
44.5
100
65

You do not know which value to mark as the largest one until you have seen them all.
After all, the last value might be the largest one. Therefore, the program must first
store all values before it can print them.

Could you simply store each value in a separate variable? If you know that there
are ten values, then you could store the values in ten variables value1, value2, value3, …,
value10. However, such a sequence of variables is not very practical to use. You would
have to write quite a bit of code ten times, once for each of the variables. In Java, an
array is a much better choice for storing a sequence of values of the same type.

Here we create an array that can hold ten values of type double:
new double[10]

The number of elements (here, 10) is called the length of the array.
The new operator constructs the array. You will want to store the array in a variable

so that you can access it later.
The type of an array variable is the type of the element to be stored, followed by [].

In this example, the type is double[], because the element type is double.
Here is the declaration of an array variable of type double[] (see Figure 1):
double[] values; 1

When you declare an array variable, it is not yet initialized. You need to initialize the
variable with the array:

double[] values = new double[10]; 2

An array collects a
sequence of values of
the same type.

© traveler1116/iStockphoto.

© traveler1116/iStockphoto.

7.1  Arrays   309

Figure 1  An Array of Size 10

1

Declare the array variable

values =

2 double[]

0
0

0
0
0
0

0
0
0
0

values =

3 double[]

35
0

0
0
0
0

0
0
0
0

values =
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
Initialize it with an array Access an array element

Now values is initialized with an array of 10 numbers. By default, each number in the
array is 0.

When you declare an array, you can specify the initial values. For example,
double[] moreValues = { 32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65 };

When you supply initial values, you don’t use the new operator. The compiler deter-
mines the length of the array by counting the initial values.

To access a value in an array, you specify which “slot” you want to use. That is
done with the [] operator:

values[4] = 35; 3

Now the number 4 slot of values is filled with 35 (see Figure 1). This “slot number” is
called an index. Each slot in an array contains an element.

Because values is an array of double values, each element values[i] can be used like
any variable of type double. For example, you can display the element with index 4
with the following command:

System.out.println(values[4]);

Individual elements
in an array are
accessed by an
integer index i,
using the notation
array[i].

An array element
can be used like
any variable.

Syntax 7.1	 Arrays

 double[] values = new double[10];

 double[] moreValues = { 32, 54, 67.5, 29, 35 };

Type of array variable

List of initial values

Name of array variable

Use brackets to access an element.

values[i] = 0;

The index must be ≥ 0 and < the length of the array.
 See page 314.

Length
Element
type

To construct an array: new typeName[length]

To access an element: arrayReference[index]

Syntax

310  Chapter 7  Arrays and Array Lists

Before continuing, we must take care of an
important detail of Java arrays. If you look
carefully at Figure 1, you will find that the
fifth element was filled when we changed
values[4]. In Java, the elements of arrays
are numbered starting at 0. That is, the
legal elements for the values array are

values[0], the first element
values[1], the second element
values[2], the third element
values[3], the fourth element
values[4], the fifth element
. . .
values[9], the tenth element

In other words, the declaration
double[] values = new double[10];

creates an array with ten elements. In this array, an index can be any integer ranging
from 0 to 9.

You have to be careful that the index stays within the valid range. Trying to access
an element that does not exist in the array is a serious error. For example, if values has
ten elements, you are not allowed to access values[20]. Attempting to access an ele-
ment whose index is not within the valid index range is called a bounds error. The
compiler does not catch this type of error. When a bounds error occurs at run time, it
causes a run-time exception.

Here is a very common bounds error:
double[] values = new double[10];
values[10] = value;

There is no values[10] in an array with ten elements—the index can range from 0 to 9.
To avoid bounds errors, you will want to know how many elements are in an array.

The expression values.length yields the length of the values array. Note that there are
no parentheses following length.

Table 1 Declaring Arrays

int[] numbers = new int[10]; An array of ten integers. All elements are
initialized with zero.

final int LENGTH = 10;
int[] numbers = new int[LENGTH];

It is a good idea to use a named constant
instead of a “magic number”.

int length = in.nextInt();
double[] data = new double[length];

The length need not be a constant.

int[] squares = { 0, 1, 4, 9, 16 }; An array of five integers, with initial values.

String[] friends = { "Emily", "Bob", "Cindy" }; An array of three strings.

double[] data = new int[10]; Error: You cannot initialize a double[]
variable with an array of type int[].

© Luckie8/iStockphoto.
Like a mailbox that is identified by a box
number, an array element is identified by
an index.

An array index must
be at least zero and
less than the size of
the array.

A bounds error,
which occurs if you
supply an invalid
array index, can
cause your program
to terminate.

©
 L

uc
ki

e8
/iS

to
ck

ph
ot

o.

7.1  Arrays   311

The following code ensures that you only access the array when the index variable
i is within the legal bounds:

if (0 <= i && i < values.length) { values[i] = value; }

Arrays suffer from a significant limitation: their length is fixed. If you start out with
an array of 10 elements and later decide that you need to add additional elements,
then you need to make a new array and copy all elements of the existing array into the
new array. We will discuss this process in detail in Section 7.3.9.

To visit all elements of an array, use a variable for the index. Suppose values has ten
elements and the integer variable i is set to 0, 1, 2, and so on, up to 9. Then the expres-
sion values[i] yields each element in turn. For example, this loop displays all elements
in the values array:

for (int i = 0; i < 10; i++)
{
 System.out.println(values[i]);
}

Note that in the loop condition the index is less than 10 because there is no element
corresponding to values[10].

7.1.2  Array References

If you look closely at Figure 1, you will note that the variable values does not store
any numbers. Instead, the array is stored elsewhere and the values variable holds a
reference to the array. (The reference denotes the location of the array in memory.)
You have already seen this behavior with objects in Section 2.8. When you access an
object or array, you need not be concerned about the fact that Java uses references.
This only becomes important when you copy a reference.

When you copy an array variable into another, both variables refer to the same
array (see Figure 2).

int[] scores = { 10, 9, 7, 4, 5 };
int[] values = scores; // Copying array reference

You can modify the array through either of the variables:
scores[3] = 10;
System.out.println(values[3]); // Prints 10

Section 7.3.9 shows how you can make a copy of the contents of the array.

Use the expression
array.length to
find the number of
elements in an array.

An array reference
specifies the location
of an array. Copying
the reference yields a
second reference to
the same array.

Figure 2 
Two Array Variables Referencing the Same Array

int[]
scores =

values =
10
9
7
4
5

312  Chapter 7  Arrays and Array Lists

7.1.3  Using Arrays with Methods

Arrays can be method arguments and return values, just like any other values.
When you define a method with an array argument, you provide a parameter vari-

able for the array. For example, the following method adds scores to a Student object:

public void addScores(int[] values)
{
 for (int i = 0; i < values.length; i++)
 {
 totalScore = totalScore + values[i];
 }
}

To call this method, you have to provide an array:

int[] scores = { 10, 9, 7, 10 };
fred.addScores(scores);

Conversely, a method can return an array. For example, a Student class can have a
method

public int[] getScores()

that returns an array with all of the student’s scores.

7.1.4  Partially Filled Arrays

An array cannot change size at run time. This is a problem when you don’t know in
advance how many elements you need. In that situation, you must come up with a
good guess on the maximum number of elements that you need to store. For exam-
ple, we may decide that we sometimes want to store more than ten elements, but
never more than 100:

final int LENGTH = 100;
double[] values = new double[LENGTH];

In a typical program run, only a part of the array will be occupied by actual elements.
We call such an array a partially filled array. You must keep a companion variable
that counts how many elements are actually used. In Figure 3 we call the companion
variable currentSize.

The following loop collects inputs and fills up the values array:

int currentSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble())
{
 if (currentSize < values.length)
 {
 values[currentSize] = in.nextDouble();
 currentSize++;
 }
}

At the end of this loop, currentSize contains the actual number of elements in the
array. Note that you have to stop accepting inputs if the currentSize companion vari-
able reaches the array length.

Arrays can occur as
method arguments
and return values.

© AlterYourReality/iStockphoto.
With a partially filled
array, you need to
remember how many
elements are filled.

With a partially
filled array, keep a
companion variable
for the current size.

©
 A

lt
er

Y
ou

rR
ea

lit
y/

iS
to

ck
ph

ot
o.

7.1  Arrays   313

Figure 3  A Partially Filled Array

double[]values =

29
67.5
54
32

values.length

...Not currently used

currentSize

To process the gathered array elements, you again use the companion variable, not
the array length. This loop prints the partially filled array:

for (int i = 0; i < currentSize; i++)
{
 System.out.println(values[i]);
}

1.	 Declare an array of integers containing the first five prime numbers.
2.	 Assume the array primes has been initialized as described in Self Check 1. What

does it contain after executing the following loop?
for (int i = 0; i < 2; i++)
{
 primes[4 - i] = primes[i];
}

3.	 Assume the array primes has been initialized as described in Self Check 1. What
does it contain after executing the following loop?
for (int i = 0; i < 5; i++)
{
 primes[i]++;
}

4.	 Given the declaration
int[] values = new int[10];

write statements to put the integer 10 into the elements of the array values with
the lowest and the highest valid index.

5.	 Declare an array called words that can hold ten elements of type String.
6.	 Declare an array containing two strings, "Yes", and "No".
7.	 Can you produce the output on page 308 without storing the inputs in an array,

by using an algorithm similar to the algorithm for finding the maximum in
Section 6.7.5?

8.	 Declare a method of a class Lottery that returns a combination of n numbers. You
don’t need to implement the method.

Practice It	 Now you can try these exercises at the end of the chapter: R7.5, R7.6, R7.10, E7.1.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a program that
demonstrates array
operations.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

314  Chapter 7  Arrays and Array Lists

Bounds Errors

Perhaps the most common error in using arrays is accessing a nonexistent element.

double[] values = new double[10];
values[10] = 5.4;
 // Error—values has 10 elements, and the index can range from 0 to 9

If your program accesses an array through an out-of-bounds index, there is no compiler error
message. Instead, the program will generate an exception at run time.

Uninitialized and Unfilled Arrays

A common error is to allocate an array variable, but not an actual array.

double[] values;
values[0] = 29.95; // Error—values not initialized

Array variables work exactly like object variables—they are only references to the actual array.
To construct the actual array, you must use the new operator:

double[] values = new double[10];

Another common error is to allocate an array of objects and expect it to be filled with objects.

BankAccount[] accounts = new BankAccount[10]; // Contains ten null references

This array contains null references, not default bank accounts. You need to remember to fill
the array, for example:

for (int i = 0; i < 10; i++)
{
 accounts[i] = new BankAccount();
}

Use Arrays for Sequences of Related Items

Arrays are intended for storing sequences of values with the same meaning. For example, an
array of test scores makes perfect sense:

int[] scores = new int[NUMBER_OF_SCORES];

But an array

int[] personalData = new int[3];

that holds a person’s age, bank balance, and shoe size in positions 0, 1, and 2 is bad design.
It would be tedious for the programmer to remember which of these data values is stored in
which array location. In this situation, it is far better to use three separate variables.

Make Parallel Arrays into Arrays of Objects

Programmers who are familiar with arrays, but unfamiliar with object-oriented program-
ming, sometimes distribute information across separate arrays. Here is a typical example: A
program needs to manage bank data, consisting of account numbers and balances. Don’t store
the account numbers and balances in separate arrays.

// Don’t do this
int[] accountNumbers;
double[] balances;

Common Error 7.1

© John Bell/iStockphoto.

Common Error 7.2

© John Bell/iStockphoto.

Programming Tip 7.1

© Eric Isselé/iStockphoto.

Programming Tip 7.2

© Eric Isselé/iStockphoto.

7.1  Arrays   315

Figure 4  Avoid Parallel Arrays

int[]accountNumbers = double[]balances =

Arrays such as these are called parallel arrays (see Figure 4). The ith slice (accountNumbers[i]
and balances[i]) contains data that need to be processed together.  

If you find yourself using two arrays that have the same length, ask yourself whether you
couldn’t replace them with a single array of a class type. Look at a
slice and find the concept that it represents. Then make the concept
into a class. In our example each slice contains an account number
and a balance, describing a bank account. Therefore, it is an easy mat-
ter to use a single array of objects

BankAccount[] accounts;

(See Figure 5.)
Why is this beneficial? Think ahead. Maybe your program will change and you will need to

store the owner of the bank account as well. It is a simple matter to update the BankAccount
class. It may well be quite complicated to add a new array and make sure that all methods that
accessed the original two arrays now also correctly access the third one.

Methods with a Variable Number of Arguments

It is possible to declare methods that receive a variable number of arguments. For example, we
can write a method that can add an arbitrary number of scores to a student:

fred.addScores(10, 7); // This method call has two arguments
fred.addScores(1, 7, 2, 9); // Another call to the same method, now with four arguments

The method must be declared as

public void addScores(int... values)

The int... type indicates that the method can receive any number of int arguments. The values
parameter variable is actually an int[] array that contains all arguments that were passed to the
method.

Avoid parallel arrays
by changing them
into arrays of objects.

Figure 5  Reorganizing Parallel Arrays into an Array of Objects

BankAccount[]accounts =

accountNumber =

balance =

BankAccount

Special Topic 7.1

© Eric Isselé/iStockphoto.

316  Chapter 7  Arrays and Array Lists

The method implementation traverses the values array and processes the elements:

public void addScores(int... values)
{
 for (int i = 0; i < values.length; i++) // values is an int[]
 {
 totalScore = totalScore + values[i];
 }
}

Computing & Society 7.1  Computer Viruses

In November 1988,
Robert Morris, a stu-

dent at Cornell University, launched a
so-called virus program that infected a
significant fraction of computers con-
nected to the Internet (which was much
smaller then than it is now).

In order to attack a computer, a virus
has to find a way to get its instructions
executed. This particular program car-
ried out a “buffer overrun” attack, pro-
viding an unexpectedly large input to a
program on another machine. That pro-
gram allocated an array of 512 charac-
ters, under the assumption that nobody
would ever provide such a long input.
Unfortunately, that program was writ-
ten in the C programming language.
C, unlike Java, does not check that an
array index is less than the length of the
array. If you write into an array using an
index that is too large, you simply over-
write memory locations that belong to
some other objects. C programmers are
supposed to provide safety checks, but
that had not happened in the program
under attack. The virus program pur-
posefully filled the 512-character array
with 536 bytes. The excess 24 bytes
overwrote a return address, which the
attacker knew was stored just after the
array. When the method that read the
input was finished, it didn’t return to its
caller but to code supplied by the virus
(see the figure). The virus was thus
able to execute its code on a remote
machine and infect it.

In Java, as in C, all programmers
must be very careful not to overrun
array boundaries. However, in Java,
this error causes a run-time excep-
tion, and it never corrupts memory
outside the array. This is one of the
safety features of Java. One may well
speculate what would possess the

virus author to spend weeks designing
a program that disabled thousands of
computers. It appears that the break-in
was fully intended by the author, but
the disabling of the computers was a
bug caused by continuous reinfection.
Morris was sentenced to three years
probation, 400 hours of community
service, and a $10,000 fine.

In recent years, computer attacks
have intensified and the motives have
become more sinister. Instead of dis-
abling computers, viruses often take
permanent residence in the attacked
computers. Criminal enterprises rent
out the processing power of millions of
hijacked computers for sending spam
e-mail. Other viruses monitor every
keystroke and send those that look like
credit card numbers or banking pass-
words to their master.

Typically, a machine gets infected
because a user executes code down-
loaded from the Internet, clicking on an
icon or link that purports to be a game
or video clip. Antivirus programs check
all downloaded programs against an
ever-growing list of known viruses.

When you use a computer for man-
aging your finances, you need to be
aware of the risk of infection. If a virus
reads your banking password and
empties your account, you will have
a hard time convincing your financial
institution that it wasn’t your act, and
you will most likely lose your money.
Keep your operating system and anti-
virus program up to date, and don’t
click on suspicious links on a web page
or in your e-mail inbox. Use banks that
require “two-factor authentication” for
major transactions, such as a callback
on your cell phone.

Viruses are even used for military
purposes. In 2010, a virus dubbed

Stuxnet spread through Microsoft
Windows and infected USB sticks. The
virus looked for Siemens industrial
computers and reprogrammed them in
subtle ways. It appears that the virus
was designed to damage the centri-
fuges of the Iranian nuclear enrichment
operation. The computers controlling
the centrifuges were not connected to
the Internet, but they were configured
with USB sticks, some of which were
infected. Security researchers believe
that the virus was developed by U.S.
and Israeli intelligence agencies, and
that it was successful in slowing down
the Iranian nuclear program. Neither
country has officially acknowledged or
denied their role in the attacks.

Return address

Buffer for input
(512 bytes)

1 Before the attack

2 After the attack

Return address

Overrun buffer
(536 bytes)

Malicious
code

A “Buffer Overrun” Attack

© Media Bakery.

7.2  The Enhanced for Loop   317

7.2  The Enhanced for Loop
Often, you need to visit all elements of an array. The enhanced for loop makes this
process particularly easy to program.

Here is how you use the enhanced for loop to total up all elements in an array
named values:

double[] values = . . .;
double total = 0;
for (double element : values)
{
 total = total + element;
}

The loop body is executed for each element in the array values. At the beginning of
each loop iteration, the next element is assigned to the variable element. Then the loop
body is executed. You should read this loop as “for each element in values”.

This loop is equivalent to the following for loop with an explicit index variable:
for (int i = 0; i < values.length; i++)
{
 double element = values[i];
 total = total + element;
}

Note an important difference between the enhanced for loop and the basic for loop.
In the enhanced for loop, the element variable is assigned values[0], values[1], and so
on. In the basic for loop, the index variable i is assigned 0, 1, and so on.

Keep in mind that the enhanced for loop has a very specific purpose: getting the
elements of a collection, from the beginning to the end. It is not suitable for all array
algorithms. In particular, the enhanced for loop does not allow you to modify the
contents of an array. The following loop does not fill an array with zeroes:

for (double element : values)
{
 element = 0; // ERROR: this assignment does not modify array elements
}

When the loop is executed, the variable element is set to values[0]. Then element is set to
0, then to values[1], then to 0, and so on. The values array is not modified. The remedy
is simple: Use a basic for loop.

for (int i = 0; i < values.length; i++)
{
 values[i] = 0; // OK
}

The enhanced for loop is a convenient mechanism for
traversing all elements in a collection.

You can use the
enhanced for loop
to visit all elements
of an array.

Use the enhanced
for loop if you do
not need the index
values in the
loop body.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a program that
demonstrates the
enhanced for loop.

© Alex Slobodkin/iStockphoto.

© Steve Cole/iStockphoto.

©
 S

te
ve

 C
ol

e/
iS

to
ck

ph
ot

o.

318  Chapter 7  Arrays and Array Lists

9.	 What does this enhanced for loop do?

Syntax 7.2	 The Enhanced for Loop

for (double element : values)
{
 sum = sum + element;
}

An array

These statements
are executed for each

element.

This variable is set in each loop iteration.
It is only de�ned inside the loop.

The variable
contains an element,

not an index.

for (typeName variable : collection)
{
 statements
}

Syntax

int counter = 0;
for (double element : values)
{
 if (element == 0) { counter++; }
}

10.	 Write an enhanced for loop that prints all elements in the array values.
11.	 Write an enhanced for loop that multiplies all elements in a double[] array named

factors, accumulating the result in a variable named product.
12.	 Why is the enhanced for loop not an appropriate shortcut for the following basic

for loop?
for (int i = 0; i < values.length; i++) { values[i] = i * i; }

Practice It	 Now you can try these exercises at the end of the chapter: R7.11, R7.12, R7.13.

7.3  Common Array Algorithms
In the following sections, we discuss some of the most common algorithms for work-
ing with arrays. If you use a partially filled array, remember to replace values.length
with the companion variable that represents the current size of the array.

7.3.1  Filling

This loop fills an array with squares (0, 1, 4, 9, 16, ...). Note that the element with
index 0 contains 02, the element with index 1 contains 12, and so on.

for (int i = 0; i < values.length; i++)
{
 values[i] = i * i;
}

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

7.3  Common Array Algorithms   319

7.3.2  Sum and Average Value

You have already encountered this algorithm in Section 6.7.1. When the values are
located in an array, the code looks much simpler:

double total = 0;
for (double element : values)
{
 total = total + element;
}

double average = 0;
if (values.length > 0) { average = total / values.length; }

7.3.3  Maximum and Minimum

Use the algorithm from Section 6.7.5 that keeps a variable for the largest element
already encountered. Here is the implementation of that algorithm for an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

Note that the loop starts at 1 because we initialize largest with values[0].
To compute the smallest element, reverse the comparison.
These algorithms require that the array contain at least one element.

7.3.4  Element Separators

When you display the elements of an array, you usually want to separate them, often
with commas or vertical lines, like this:

32 | 54 | 67.5 | 29 | 35

Note that there is one fewer separator than there are numbers. Print the separator
before each element in the sequence except the initial one (with index 0) like this:

for (int i = 0; i < values.length; i++)
{
 if (i > 0)
 {
 System.out.print(" | ");
 }
 System.out.print(values[i]);
}

If you want comma separators, you can use the Arrays.toString method. (You’ll need
to import java.util.Arrays.) The expression

Arrays.toString(values)

returns a string describing the contents of the array values in the form
[32, 54, 67.5, 29, 35]

© CEFutcher/iStockphoto.

When separating
elements, don’t place
a separator before
the first element.

© trutenka/iStockphoto.
To print five
elements, you need
four separators.

©
 C

E
Fu

tc
he

r/
iS

to
ck

ph
ot

o.
©

 tr
ut

en
ka

/iS
to

ck
ph

ot
o.

320  Chapter 7  Arrays and Array Lists

The elements are surrounded by a pair of brackets and separated by commas. This
method can be convenient for debugging:

System.out.println("values=" + Arrays.toString(values));

7.3.5  Linear Search

You often need to search for the position of a specific element in an array so that you
can replace or remove it. Visit all elements until you have found a match or you have
come to the end of the array. Here we search for the position of the first element in an
array that is equal to 100:

int searchedValue = 100;
int pos = 0;
boolean found = false;
while (pos < values.length && !found)
{
 if (values[pos] == searchedValue)
 {
 found = true;
 }
 else
 {
 pos++;
 }
}
if (found) { System.out.println("Found at position: " + pos); }
else { System.out.println("Not found"); }

This algorithm is called linear search or sequential search because you inspect the
elements in sequence. If the array is sorted, you can use the more efficient binary
search algorithm. We discuss binary search in Chapter 14.

7.3.6  Removing an Element

Suppose you want to remove the element with index pos from the array values. As
explained in Section 7.1.4, you need a companion variable for tracking the number of
elements in the array. In this example, we use a companion variable called currentSize.

If the elements in the array are not in any particular order, simply overwrite the
element to be removed with the last element of the array, then decrement the current-
Size variable. (See Figure 6.)

© yekorzh/iStockphoto.
To search for a
specific element,
visit the elements
and stop when you
encounter the match.

A linear search
inspects elements
in sequence until a
match is found.

Figure 6 
Removing an Element in an Unordered Array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

Decrement after
moving element

currentSize

32
54

67.5
29

34.5
80
115
44.5
100
65

Figure 7 
Removing an Element in an Ordered Array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

1
2
3
4
5

Decrement after
moving elements

32
54

67.5
29
80
115
44.5
100
65
65

©
 y

ek
or

zh
/iS

to
ck

ph
ot

o.

7.3  Common Array Algorithms   321

values[pos] = values[currentSize - 1];
currentSize--;

The situation is more complex if the order of the elements matters. Then you must
move all elements following the element to be removed to a lower index, and then
decrement the variable holding the size of the array. (See Figure 7.)

for (int i = pos + 1; i < currentSize; i++)
{
 values[i - 1] = values[i];
}
currentSize--;

7.3.7  Inserting an Element

In this section, you will see how to insert an element into an array. Note that you
need a companion variable for tracking the array size, as explained in Section 7.1.4.

If the order of the elements does not matter, you can simply insert new elements at
the end, incrementing the variable tracking the size.

if (currentSize < values.length)
{
 currentSize++;
 values[currentSize - 1] = newElement;
}

It is more work to insert an element at a particular position in the middle of an array.
First, move all elements after the insertion location to a higher index. Then insert the
new element (see Figure 9).

Note the order of the movement: When you remove an element, you first move
the next element to a lower index, then the one after that, until you finally get to the
end of the array. When you insert an element, you start at the end of the array, move
that element to a higher index, then move the one before that, and so on until you
finally get to the insertion location.

if (currentSize < values.length)
{
 currentSize++;
 for (int i = currentSize - 1; i > pos; i--)
 {
 values[i] = values[i - 1];
 }
 values[pos] = newElement;
}

Before inserting
an element, move
elements to the end
of the array starting
with the last one.

Figure 8 
Inserting an Element in an Unordered Array

[0]

[1]

[2]
...

[currentSize - 1]

Incremented before
inserting element

Insert new element here
currentSize

32
54

67.5
29

34.5
80
115
44.5
100

Figure 9 
Inserting an Element in an Ordered Array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

5
4
3
2
1

Incremented before
moving elements

Insert new element here

32
54

67.5
29

34.5
34.5
80
115
44.5
100

322  Chapter 7  Arrays and Array Lists

7.3.8  Swapping Elements

You often need to swap elements of an array. For exam-
ple, you can sort an array by repeatedly swapping ele-
ments that are not in order.

Consider the task of swapping the elements at posi-
tions i and j of an array values. We’d like to set values[i]
to values[j]. But that overwrites the value that is currently
stored in values[i], so we want to save that first:

double temp = values[i]; 2
values[i] = values[j]; 3

Now we can set values[j] to the saved value.
values[j] = temp; 4

Figure 10 shows the process.

To swap two elements, you
need a temporary variable.

Use a temporary
variable when
swapping two
elements.

Figure 10  Swapping Array Elements

[0]

[1]

[2]

[3]

[4]

[i]

[j]

34.5
29

67.5
54
32

1

[i]

[j]

34.5
29

67.5
54
32

2

temp = 54

[i]

[j]

34.5
29

67.5
29
32

3

temp = 54

[i]

[j]

34.5
54

67.5
29
32

4

temp = 54

Values to be swapped
values =

values =

values =

values =

7.3  Common Array Algorithms   323

7.3.9  Copying Arrays

Array variables do not themselves hold array elements. They hold a reference to the
actual array. If you copy the reference, you get another reference to the same array
(see Figure 11):

double[] values = new double[6];
. . . // Fill array
double[] prices = values; 1

If you want to make a true copy of an array, call the Arrays.copyOf method (as shown
in Figure 11).

double[] prices = Arrays.copyOf(values, values.length); 2

The call Arrays.copyOf(values, n) allocates an array of length n, copies the first n ele-
ments of values (or the entire values array if n > values.length) into it, and returns the
new array.

In order to use the Arrays class, you need to add the following statement to the top of
your program:

import java.util.Arrays;

Another use for Arrays.copyOf is to grow an array that has run out of space. The fol-
lowing statements have the effect of doubling the length of an array (see Figure 12):

double[] newValues = Arrays.copyOf(values, 2 * values.length); 1
values = newValues; 2

The copyOf method was added in Java 6. If you use Java 5, replace
double[] newValues = Arrays.copyOf(values, n)

with

Use the Arrays.
copyOf method to
copy the elements of
an array into a
new array.

Figure 11  Copying an Array Reference versus Copying an Array

1 2

double[]
values =

prices =
32
54

67.5
29
35

47.5

double[]values =

double[]prices =

32
54

67.5
29
35

47.5

32
54

67.5
29
35

47.5

After the assignment prices = values After calling Arrays.copyOf

324  Chapter 7  Arrays and Array Lists

Figure 12  Growing an Array

double[] double[]values =

double[]newValues =

values =

double[]newValues =

1 2

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

Move elements to a larger array Store the reference to the larger array in values

double[] newValues = new double[n];
for (int i = 0; i < n && i < values.length; i++)
{
 newValues[i] = values[i];
}

7.3.10  Reading Input

If you know how many inputs the user will supply, it is simple to place them into an
array:

double[] inputs = new double[NUMBER_OF_INPUTS];
for (i = 0; i < inputs.length; i++)
{
 inputs[i] = in.nextDouble();
}

However, this technique does not work if you need to read a sequence of arbitrary
length. In that case, add the inputs to an array until the end of the input has been
reached.

int currentSize = 0;
while (in.hasNextDouble() && currentSize < inputs.length)
{
 inputs[currentSize] = in.nextDouble();
 currentSize++;
}

7.3  Common Array Algorithms   325

Now inputs is a partially filled array, and the companion variable currentSize is set to
the number of inputs.

However, this loop silently throws away inputs that don’t fit into the array. A bet-
ter approach is to grow the array to hold all inputs.

double[] inputs = new double[INITIAL_SIZE];
int currentSize = 0;
while (in.hasNextDouble())
{
 // Grow the array if it has been completely filled
 if (currentSize >= inputs.length)
 {
 inputs = Arrays.copyOf(inputs, 2 * inputs.length); // Grow the inputs array
 }

 inputs[currentSize] = in.nextDouble();
 currentSize++;
}

When you are done, you can discard any excess (unfilled) elements:
inputs = Arrays.copyOf(inputs, currentSize);

The following program puts these algorithms to work, solving the task that we set our-
selves at the beginning of this chapter: to mark the largest value in an input sequence.

section_3/LargestInArray.java

1 import java.util.Scanner;
2
3 /**

4 This program reads a sequence of values and prints them, marking the largest value.
5 */
6 public class LargestInArray
7 {
8 public static void main(String[] args)
9 {

10 final int LENGTH = 100;
11 double[] values = new double[LENGTH];
12 int currentSize = 0;
13
14 // Read inputs
15
16 System.out.println("Please enter values, Q to quit:");
17 Scanner in = new Scanner(System.in);
18 while (in.hasNextDouble() && currentSize < values.length)
19 {
20 values[currentSize] = in.nextDouble();
21 currentSize++;
22 }
23
24 // Find the largest value
25
26 double largest = values[0];
27 for (int i = 1; i < currentSize; i++)
28 {
29 if (values[i] > largest)
30 {
31 largest = values[i];
32 }
33 }

326  Chapter 7  Arrays and Array Lists

34
35 // Print all values, marking the largest
36
37 for (int i = 0; i < currentSize; i++)
38 {
39 System.out.print(values[i]);
40 if (values[i] == largest)
41 {
42 System.out.print(" <== largest value");
43 }
44 System.out.println();
45 }
46 }
47 }

Program Run

Please enter values, Q to quit:
34.5 80 115 44.5 Q
34.5
80
115 <== largest value
44.5

13.	 Given these inputs, what is the output of the LargestInArray program?
20 10 20 Q

14.	 Write a loop that counts how many elements in an array are equal to zero.
15.	 Consider the algorithm to find the largest element in an array. Why don’t we

initialize largest and i with zero, like this?
double largest = 0;
for (int i = 0; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

16.	 When printing separators, we skipped the separator before the initial element.
Rewrite the loop so that the separator is printed after each element, except for
the last element.

17.	 What is wrong with these statements for printing an array with separators?
System.out.print(values[0]);
for (int i = 1; i < values.length; i++)
{
 System.out.print(", " + values[i]);
}

18.	 When finding the position of a match, we used a while loop, not a for loop. What
is wrong with using this loop instead?
for (pos = 0; pos < values.length && !found; pos++)
{
 if (values[pos] > 100)
 {
 found = true;
 }
}

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

7.4  Problem Solving: Adapting Algorithms   327

19.	 When inserting an element into an array, we moved the elements with larger
index values, starting at the end of the array. Why is it wrong to start at the inser-
tion location, like this?
for (int i = pos; i < currentSize - 1; i++)
{
 values[i + 1] = values[i];
}

Practice It	 Now you can try these exercises at the end of the chapter: R7.16, R7.19, E7.7.

Underestimating the Size of a Data Set

Programmers commonly underestimate the amount of input data that a user will pour into an
unsuspecting program. Suppose you write a program to search for text in a file. You store each
line in a string, and keep an array of strings. How big do you make the array? Surely nobody
is going to challenge your program with an input that is more than 100 lines. Really? It is very
easy to feed in the entire text of Alice in Wonderland or War and Peace (which are available on
the Internet). All of a sudden, your program has to deal with tens or hundreds of thousands of
lines. You either need to allow for large inputs or politely reject the excess input.

Sorting with the Java Library

Sorting an array efficiently is not an easy task. You will
learn in Chapter 14 how to implement efficient sorting
algorithms. Fortunately, the Java library provides an effi-
cient sort method.

To sort an array values, call

Arrays.sort(values);

If the array is partially filled, call

Arrays.sort(values, 0, currentSize);

7.4  Problem Solving: Adapting Algorithms
In Section 7.3, you were introduced to a number of fundamental array algorithms.
These algorithms form the building blocks for many programs that process arrays.
In general, it is a good problem-solving strategy to have a repertoire of fundamental
algorithms that you can combine and adapt.

Consider this example problem: You are given the quiz scores of a student. You are
to compute the final quiz score, which is the sum of all scores after dropping the low-
est one. For example, if the scores are

8 7 8.5 9.5 7 4 10

then the final score is 50.

Common Error 7.3

© John Bell/iStockphoto.

Special Topic 7.2

© Eric Isselé/iStockphoto.

© ProstoVova/iStockphoto.

By combining
fundamental
algorithms, you can
solve complex
programming tasks.

©
 P

ro
st

oV
ov

a/
iS

to
ck

ph
ot

o.

328  Chapter 7  Arrays and Array Lists

We do not have a ready-made algorithm for this situation. Instead, consider which
algorithms may be related. These include:

•	 Calculating the sum (Section 7.3.2)
•	 Finding the minimum value (Section 7.3.3)
•	 Removing an element (Section 7.3.6)

We can formulate a plan of attack that combines these algorithms:

Find the minimum.
Remove it from the array.
Calculate the sum.

Let’s try it out with our example. The minimum of

8

[0]

7

[1]

8.5

[2]

9.5

[3]

7

[4]

4

[5]

10

[6]

is 4. How do we remove it?
Now we have a problem. The removal algorithm in Section 7.3.6 locates the ele-

ment to be removed by using the position of the element, not the value.
But we have another algorithm for that:

•	 Linear search (Section 7.3.5)
We need to fix our plan of attack:

Find the minimum value.
Find its position.
Remove that position from the array.
Calculate the sum.

Will it work? Let’s continue with our example.
We found a minimum value of 4. Linear search tells us that the value 4 occurs at

position 5.

8

[0]

7

[1]

8.5

[2]

9.5

[3]

7

[4]

4

[5]

10

[6]

We remove it:

8

[0]

7

[1]

8.5

[2]

9.5

[3] [4]

7

[5]

10

Finally, we compute the sum: 8 + 7 + 8.5 + 9.5 + 7 + 10 = 50.
This walkthrough demonstrates that our strategy works.
Can we do better? It seems a bit inefficient to find the minimum and then make

another pass through the array to obtain its position.
We can adapt the algorithm for finding the minimum to yield the position of the

minimum. Here is the original algorithm:
double smallest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] < smallest)
 {
 smallest = values[i];
 }

You should be
familiar with the
implementation
of fundamental
algorithms so that
you can adapt them.

7.4  Problem Solving: Adapting Algorithms   329

}

When we find the smallest value, we also want to update the position:
if (values[i] < smallest)
{
 smallest = values[i];
 smallestPosition = i;
}

In fact, then there is no reason to keep track of the smallest value any longer. It is sim-
ply values[smallestPosition]. With this insight, we can adapt the algorithm as follows:

int smallestPosition = 0;
for (int i = 1; i < values.length; i++)
{
 if (values[i] < values[smallestPosition])
 {
 smallestPosition = i;
 }
}

With this adaptation, our problem is solved with the following strategy:

Find the position of the minimum.
Remove it from the array.
Calculate the sum.

The next section shows you a technique for discovering a new algorithm when none
of the fundamental algorithms can be adapted to a task.

20.	 Section 7.3.6 has two algorithms for removing an element. Which of the two
should be used to solve the task described in this section?

21.	 It isn’t actually necessary to remove the minimum in order to compute the total
score. Describe an alternative.

22.	 How can you print the number of positive and negative values in a given array,
using one or more of the algorithms in Section 6.7?

23.	 How can you print all positive values in an array, separated by commas?
24.	 Consider the following algorithm for collecting all matches in an array:

int matchesSize = 0;
for (int i = 0; i < values.length; i++)
{
 if (values[i] fulfills the condition)
 {
 matches[matchesSize] = values[i];
 matchesSize++;
 }
}

How can this algorithm help you with Self Check 23?

Practice It	 Now you can try these exercises at the end of the chapter: R7.25, R7.26.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjeo6code to
download a program
that uses the adapted
algorithm for finding
the minimum.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

330  Chapter 7  Arrays and Array Lists

Step 1	 Decompose your task into steps.

You will usually want to break down your task into multiple steps, such as
•	 Reading the data into an array.
•	 Processing the data in one or more steps.
•	 Displaying the results.
When deciding how to process the data, you should be familiar with the array algorithms in
Section 7.3. Most processing tasks can be solved by using one or more of these algorithms.

In our sample problem, we will want to read the data. Then we will remove the minimum
and compute the total. For example, if the input is 8 7 8.5 9.5 7 5 10, we will remove the mini-
mum of 5, yielding 8 7 8.5 9.5 7 10. The sum of those values is the final score of 50.

Thus, we have identified three steps:

Read inputs.
Remove the minimum.
Calculate the sum.

Step 2	 Determine which algorithm(s) you need.

Sometimes, a step corresponds to exactly one of the basic array algorithms in Section 7.3. That
is the case with calculating the sum (Section 7.3.2) and reading the inputs (Section 7.3.10). At
other times, you need to combine several algorithms. To remove the minimum value, you can
find the minimum value (Section 7.3.3), find its position (Section 7.3.5), and remove the ele-
ment at that position (Section 7.3.6).

We have now refined our plan as follows:

Read inputs.
Find the minimum.
Find its position.
Remove the minimum.
Calculate the sum.

This plan will work—see Section 7.4. But here is an alternate approach. It is easy to compute
the sum and subtract the minimum. Then we don’t have to find its position. The revised plan is

Read inputs.
Find the minimum.
Calculate the sum.
Subtract the minimum.

© Steve Simzer/iStockphoto.

How To 7.1	 Working with Arrays

In many data processing situations, you need
to process a sequence of values. This How To
walks you through the steps for storing input
values in an array and carrying out computa-
tions with the array elements.

Problem Statement  Consider again the
problem from Section 7.4: A final quiz score is
computed by adding all the scores, except for
the lowest one. For example, if the scores are

8 7 8.5 9.5 7 5 10

then the final score is 50.
Thierry Dosogne/The Image Bank/Getty Images, Inc.Thierry Dosogne/The Image Bank/Getty Images, Inc.

7.4  Problem Solving: Adapting Algorithms   331

Step 3	 Use classes and methods to structure the program.

Even though it may be possible to put all steps into the main method, this is rarely a good idea.
It is better to carry out each processing step in a separate method. It is also a good idea to come
up with a class that is responsible for collecting and processing the data.

In our example, let’s provide a class Student. A student has an array of scores.

public class Student
{
 private double[] scores;
 private double scoresSize;
 . . .
 public Student(int capacity) { . . . }
 public boolean addScore(double score) { . . . }
 public double finalScore() { . . . }
}

A second class, ScoreAnalyzer, is responsible for reading the user input and displaying the
result. Its main method simply calls the Student methods:

Student fred = new Student(100);
System.out.println("Please enter values, Q to quit:");
while (in.hasNextDouble())
{
 if (!fred.addScore(in.nextDouble()))
 {
 System.out.println("Too many scores.");
 return;
 }
}
System.out.println("Final score: " + fred.finalScore());

Now the finalScore method must do the heavy lifting. It too should not have to do all the
work. Instead, we will supply helper methods

public double sum()
public double minimum()

These methods simply implement the algorithms in Sections 7.3.2 and 7.3.3.
Then the finalScore method becomes

public double finalScore()
{
 if (scoresSize == 0)
 {
 return 0;
 }
 else if (scoresSize == 1)
 {
 return scores[0];
 }
 else
 {
 return sum() - minimum();
 }
}

Step 4	 Assemble and test the program.

Place your methods into a class. Review your code and check that you handle both normal
and exceptional situations. What happens with an empty array? One that contains a single ele-
ment? When no match is found? When there are multiple matches? Consider these boundary
conditions and make sure that your program works correctly.

332  Chapter 7  Arrays and Array Lists

In our example, it is impossible to compute the minimum if the array is empty. In that case,
we should terminate the program with an error message before attempting to call the minimum
method.

What if the minimum value occurs more than once? That means that a student had more
than one test with the same low score. We subtract only one of the occurrences of that low
score, and that is the desired behavior.

The following table shows test cases and their expected output:

Test Case Expected Output Comment

8 7 8.5 9.5 7 5 10 50 See Step 1.

8 7 7 9 24 Only one instance of the low score should be removed.

8 0 After removing the low score, no score remains.

(no inputs) Error That is not a legal input.

The complete program is in the how_to_1 folder of your companion code.

7.5  Problem Solving: Discovering Algorithms by
Manipulating Physical Objects

In Section 7.4, you saw how to solve a problem by com-
bining and adapting known algorithms. But what do
you do when none of the standard algorithms is suf-
ficient for your task? In this section, you will learn a
technique for discovering algorithms by manipulating
physical objects.

Consider the following task: You are given an array
whose size is an even number, and you are to switch the
first and the second half. For example, if the array con-
tains the eight numbers

9 13 21 4 11 7 1 3

then you should change it to

9 13 21 411 7 1 3

© Tom Horyn/iStockphoto.

Worked Example 7.1	 Rolling the Dice

Learn how to analyze a set of die tosses to see whether the die
is “fair”. Go to wiley.com/go/bjeo6examples and download the
file for Worked Example 7.1.

© ktsimage/iStockphoto.

© Alex Slobodkin/iStockphoto.

© JenCon/iStockphoto.
Manipulating physical objects
can give you ideas for
discovering algorithms.

©
 k

ts
im

ag
e/

iS
to

ck
ph

ot
o.

©
 J

en
C

on
/iS

to
ck

ph
ot

o.

7.5  Problem Solving: Discovering Algorithms by Manipulating Physical Objects   333

Many students find it quite challenging to come up with an algorithm. They may
know that a loop is required, and they may realize that elements should be inserted
(Section 7.3.7) or swapped (Section 7.3.8), but they do not have sufficient intuition to
draw diagrams, describe an algorithm, or write down pseudocode.

One useful technique for discovering an algorithm is to manipulate physical
objects. Start by lining up some objects to denote an array. Coins, playing cards, or
small toys are good choices.

Here we arrange eight coins:

coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto.
Now let’s step back and see what we can do to change the order of the coins.

We can remove a coin (Section 7.3.6):

Visualizing the
removal of an
array element

coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto.
We can insert a coin (Section 7.3.7):

Visualizing the
insertion of an
array element

coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto.
Or we can swap two coins (Section 7.3.8).

Visualizing the
swapping of two
array elements

coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto.Go ahead—line up some coins and try out these three operations right now so that
you get a feel for them.

Use a sequence of
coins, playing cards,
or toys to visualize
an array of values.

(c
oi

ns
)

©
 ja

m
es

be
ne

t/
iS

to
ck

ph
ot

o;
 (

do
lla

r
co

in
s)

 J
or

di
D

el
ga

do
/iS

to
ck

ph
ot

o.

334  Chapter 7  Arrays and Array Lists

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

	
coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto.

Next, we swap the coins in positions 1 and 5:

	

coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto.Two more swaps, and we are done:

	

coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto.

Now an algorithm is becoming apparent:

i = 0
j = ... (we’ll think about that in a minute)
While (don’t know yet)
	 Swap elements at positions i and j
	 i++
	 j++

Where does the variable j start? When we have eight coins, the coin at position zero is
moved to position 4. In general, it is moved to the middle of the array, or to position
size / 2.

And how many iterations do we make? We need to swap all coins in the first half.
That is, we need to swap size / 2 coins.

(c
oi

ns
)

©
 ja

m
es

be
ne

t/
iS

to
ck

ph
ot

o;
 (

do
lla

r
co

in
s)

 J
or

di
D

el
ga

do
/iS

to
ck

ph
ot

o.

7.5  Problem Solving: Discovering Algorithms by Manipulating Physical Objects   335

The pseudocode is

i = 0
j = size / 2
While (i < size / 2)
	 Swap elements at positions i and j
	 i++
	 j++

It is a good idea to make a walkthrough of the pseudocode (see Section 6.2). You can
use paper clips to denote the positions of the variables i and j. If the walkthrough is
successful, then we know that there was no “off-by-one” error in the pseudocode.
Self Check 25 asks you to carry out the walkthrough, and Exercise E7.8 asks you to
translate the pseudocode to Java. Exercise R7.27 suggests a different algorithm for
switching the two halves of an array, by repeatedly removing and inserting coins.

Many people find that the manipulation of physical objects is less intimidating
than drawing diagrams or mentally envisioning algorithms. Give it a try when you
need to design a new algorithm!

25.	 Walk through the algorithm that we developed in this section, using two paper
clips to indicate the positions for i and j. Explain why there are no bounds errors
in the pseudocode.

26.	 Take out some coins and simulate the following pseudocode, using two paper
clips to indicate the positions for i and j.
i = 0
j = size - 1
While (i < j)
	 Swap elements at positions i and j
	 i++
	 j--
What does the algorithm do?

27.	 Consider the task of rearranging all elements in an array so that the even num-
bers come first. Otherwise, the order doesn’t matter. For example, the array
1 4 14 2 1 3 5 6 23

could be rearranged to
4 2 14 6 1 5 3 23 1

Using coins and paperclips, discover an algorithm that solves this task by
swapping elements, then describe it in pseudocode.

28.	 Discover an algorithm for the task of Self Check 27 that uses removal and
insertion of elements instead of swapping.

29.	 Consider the algorithm in Section 6.7.5 that finds the
largest element in a sequence of inputs—not the largest
element in an array. Why is this algorithm better visual
ized by picking playing cards from a deck rather than
arranging toy soldiers in a sequence?

Practice It	 Now you can try these exercises at the end of the chapter: R7.27, R7.28, E7.8.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a program that
implements the algo-
rithm that switches
the first and second
halves of an array.

© Alex Slobodkin/iStockphoto.

You can use paper
clips as position
markers or counters.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© claudio.arnese/iStockphoto.

©
 c

la
ud

io
.a

rn
es

e/
iS

to
ck

ph
ot

o.

336  Chapter 7  Arrays and Array Lists

7.6  Two-Dimensional Arrays
It often happens that you want to store
collections of values that have a two-
dimensional layout. Such data sets com-
monly occur in financial and scientific
applications. An arrangement consisting
of rows and columns of values is called a
two-dimensional array, or a matrix.

Let’s explore how to store the example
data shown in Figure 13: the medal counts
of the figure skating competitions at the
2014 Winter Olympics.

Gold Silver Bronze
Canada 0 3 0
Italy 0 0 1
Germany 0 0 1
Japan 1 0 0
Kazakhstan 0 0 1
Russia 3 1 1
South Korea 0 1 0
United States 1 0 1

Figure 13  Figure Skating Medal Counts

7.6.1  Declaring Two-Dimensional Arrays

In Java, you obtain a two-dimensional array by supplying the number of rows and
columns. For example, new int[7][3] is an array with seven rows and three columns.
You store a reference to such an array in a variable of type int[][]. Here is a complete
declaration of a two-dimensional array, suitable for holding our medal count data:

final int COUNTRIES = 8;
final int MEDALS = 3;
int[][] counts = new int[COUNTRIES][MEDALS];

Alternatively, you can declare and initialize the array by grouping each row:
int[][] counts =
 {
 { 0, 3, 0 },
 { 0, 0, 1 },
 { 0, 0, 1 },
 { 1, 0, 0 },
 { 0, 0, 1 },
 { 3, 1, 1 },
 { 0, 1, 0 }
 { 1, 0, 1 }
 };

© Trub/iStockphoto.

Use a two-
dimensional array to
store tabular data.

© technotr/iStockphoto.

©
 T

ru
b/

iS
to

ck
ph

ot
o.

©
 te

ch
no

tr
/iS

to
ck

ph
ot

o.

7.6  Two-Dimensional Arrays   337

Syntax 7.3	 Two-Dimensional Array Declaration

int[][] data = {
 { 16, 3, 2, 13 },
 { 5, 10, 11, 8 },
 { 9, 6, 7, 12 },
 { 4, 15, 14, 1 },
 };

Name
List of initial values

double[][] tableEntries = new double[7][3];

Name Element type
Number of rows
Number of columns

All values are initialized with 0.

As with one-dimensional arrays, you cannot change the size of a two-dimensional
array once it has been declared.

7.6.2  Accessing Elements

To access a particular element in the two-dimensional array, you need to specify
two index values in separate brackets to select the row and column, respectively (see
Figure 14):

int medalCount = counts[3][1];

To access all elements in a two-dimensional array, you use nested loops. For example,
the following loop prints all elements of counts:

for (int i = 0; i < COUNTRIES; i++)
{
 // Process the ith row
 for (int j = 0; j < MEDALS; j++)
 {
 // Process the jth column in the ith row
 System.out.printf("%8d", counts[i][j]);
 }
 System.out.println(); // Start a new line at the end of the row
}

Individual elements
in a two-dimensional
array are accessed
by using two index
values, array[i][j].

Figure 14 
Accessing an Element in a
Two-Dimensional Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[0][1][2]

counts[3][1]

Column index

R
ow

 in
de

x

338  Chapter 7  Arrays and Array Lists

In these loops, the number of rows and columns were given as constants. Alterna-
tively, you can use the following expressions:

•	 counts.length is the number of rows.
•	 counts[0].length is the number of columns. (See Special Topic 7.3 for an explana-

tion of this expression.)

With these expressions, the nested loops become
for (int i = 0; i < counts.length; i++)
{
 for (int j = 0; j < counts[0].length; j++)
 {
 System.out.printf("%8d", counts[i][j]);
 }
 System.out.println();
}

7.6.3  Locating Neighboring Elements

Some programs that work with two-dimensional arrays need to locate the elements
that are adjacent to an element. This task is particularly common in games. Figure 15
shows how to compute the index values of the neighbors of an element.

For example, the neighbors of counts[3][1] to the left and right are counts[3][0] and
counts[3][2]. The neighbors to the top and bottom are counts[2][1] and counts[4][1].

You need to be careful about computing neighbors at the boundary of the array.
For example, counts[0][1] has no neighbor to the top. Consider the task of computing
the sum of the neighbors to the top and bottom of the element count[i][j]. You need
to check whether the element is located at the top or bottom of the array:

int total = 0;
if (i > 0) { total = total + counts[i - 1][j]; }
if (i < ROWS - 1) { total = total + counts[i + 1][j]; }

7.6.4  Accessing Rows and Columns

You often need to access all elements in a row or column, for example to compute the
sum of the elements or the largest element in a row or column.

Figure 15 
Neighboring Locations in a
Two-Dimensional Array

[i - 1][j - 1] [i - 1][j] [i - 1][j + 1]

[i][j - 1] [i][j] [i][j + 1]

[i + 1][j - 1] [i + 1][j] [i + 1][j + 1]

7.6  Two-Dimensional Arrays   339

In our sample array, the row totals give us the total number of medals won by a par-
ticular country.

Finding the correct index values is a bit tricky, and it is a good idea to make a quick
sketch. To compute the total of row i, we need to visit the following elements:

[i][0] [i][1] [i][2]row i

0 MEDALS - 1

As you can see, we need to compute the sum of counts[i][j], where j ranges from 0 to
MEDALS - 1. The following loop computes the total:

int total = 0;
for (int j = 0; j < MEDALS; j++)
{
 total = total + counts[i][j];
}

Computing column totals is similar. Form the sum of counts[i][j], where i ranges
from 0 to COUNTRIES - 1.

int total = 0;
for (int i = 0; i < COUNTRIES; i++)
{
 total = total + counts[i][j];
}

[0][j]

[1][j]

[2][j]

[3][j]

[4][j]

[5][j]

[6][j]

column j

[7][j] COUNTRIES - 1

0

Working with two-dimensional arrays is illustrated in the following program. The
program prints out the medal counts and the row totals.

340  Chapter 7  Arrays and Array Lists

section_6/Medals.java

1 /**
2 This program prints a table of medal winner counts with row totals.
3 */
4 public class Medals
5 {
6 public static void main(String[] args)
7 {
8 final int COUNTRIES = 8;
9 final int MEDALS = 3;

10
11 String[] countries =
12 {
13 "Canada",
14 "Italy",
15 "Germany",
16 “Japan”,
17 "Kazakhstan",
18 "Russia",
19 "South Korea",
20 "United States"
21 };
22
23 int[][] counts =
24 {
25 { 0, 3, 0 },
26 { 0, 0, 1 },
27 { 0, 0, 1 },
28 { 1, 0, 0 },
29 { 0, 0, 1 },
30 { 3, 1, 1 },
31 { 0, 1, 0 },
32 { 1, 0, 1 }
33 };
34
35 System.out.println(" Country Gold Silver Bronze Total");
36
37 // Print countries, counts, and row totals
38 for (int i = 0; i < COUNTRIES; i++)
39 {
40 // Process the ith row
41 System.out.printf("%15s", countries[i]);
42
43 int total = 0;
44
45 // Print each row element and update the row total
46 for (int j = 0; j < MEDALS; j++)
47 {
48 System.out.printf("%8d", counts[i][j]);
49 total = total + counts[i][j];
50 }
51
52 // Display the row total and print a new line
53 System.out.printf("%8d\n", total);
54 }
55 }
56 }

7.6  Two-Dimensional Arrays   341

Program Run

 Country Gold Silver Bronze Total
 Canada 0 3 0 3
 Italy 0 0 1 1
 Germany 0 0 1 1
 Japan 1 0 0 1
 Kazakhstan 0 0 1 1
 Russia 3 1 1 5
 South Korea 0 1 0 1
United States 1 0 1 2

30.	 What results do you get if you total the columns in our sample medals data?
31.	 Consider an 8 × 8 array for a board game:

int[][] board = new int[8][8];

Using two nested loops, initialize the board so that zeroes and ones alternate, as
on a checkerboard:
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
. . .
1 0 1 0 1 0 1 0

Hint: Check whether i + j is even.
32.	 Declare a two-dimensional array for representing a tic-tac-toe board. The board

has three rows and columns and contains strings "x", "o", and " ".
33.	 Write an assignment statement to place an "x" in the upper-right corner of the

tic-tac-toe board in Self Check 32.
34.	 Which elements are on the diagonal joining the upper-left and the lower-right

corners of the tic-tac-toe board in Self Check 32?

Practice It	 Now you can try these exercises at the end of the chapter: R7.29, E7.16, E7.17.

Two-Dimensional Arrays with Variable Row Lengths

When you declare a two-dimensional array with the command

int[][] a = new int[3][3];

you get a 3 × 3 matrix that can store 9 elements:

a[0][0] a[0][1] a[0][2]
a[1][0] a[1][1] a[1][2]
a[2][0] a[2][1] a[2][2]

In this matrix, all rows have the same length.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© Tom Horyn/iStockphoto.

Worked Example 7.2	 A World Population Table

Learn how to print world population data in a table with row and column headers, and with
totals for each of the data columns. Go to wiley.com/go/bjeo6examples and download the file for
Worked Example 7.2.

© Alex Slobodkin/iStockphoto.

Special Topic 7.3

© Eric Isselé/iStockphoto.

342  Chapter 7  Arrays and Array Lists

In Java it is possible to declare arrays in which the row length varies. For example, you can
store an array that has a triangular shape, such as:

b[0][0]
b[1][0] b[1][1]
b[2][0] b[2][1] b[2][2]

To allocate such an array, you must work harder. First, you allocate space to hold three rows.
Indicate that you will manually set each row by leaving the second array index empty:

double[][] b = new double[3][];

Then allocate each row separately (see Figure 16):

for (int i = 0; i < b.length; i++)
{
 b[i] = new double[i + 1];
}

You can access each array element as b[i][j]. The expression b[i] selects the ith row, and the
[j] operator selects the jth element in that row.

Note that the number of rows is b.length, and the length of the ith row is b[i].length. For
example, the following pair of loops prints a ragged array:

for (int i = 0; i < b.length; i++)
{
 for (int j = 0; j < b[i].length; j++)
 {
 System.out.print(b[i][j]);
 }
 System.out.println();
}

Alternatively, you can use two enhanced for loops:

for (double[] row : b)
{
 for (double element : row)
 {
 System.out.print(element);
 }
 System.out.println();
}

Naturally, such “ragged” arrays are not very common.
Java implements plain two-dimensional arrays in exactly the same way as ragged arrays: as

arrays of one-dimensional arrays. The expression new int[3][3] automatically allocates an
array of three rows, and three arrays for the rows’ contents.

Figure 16  A Triangular Array

double[]b =

[0]

[1]

[2]

double[] [0]

double[] [0] [1]

double[] [0] [1] [2]

7.7  Array Lists   343

Multidimensional Arrays

You can declare arrays with more than two dimensions. For example, here is a three-
dimensional array:

int[][][] rubiksCube = new int[3][3][3];

Each array element is specified by three index values:

rubiksCube[i][j][k]

7.7  Array Lists
When you write a program that collects inputs, you
don’t always know how many inputs you will have.
In such a situation, an array list offers two significant
advantages:

•	 Array lists can grow and shrink as needed.
•	 The ArrayList class supplies methods for common

tasks, such as inserting and removing elements.

In the following sections, you will learn how to work
with array lists.

An array list expands to hold as many elements as needed.

Special Topic 7.4

© Eric Isselé/iStockphoto.

© digital94086/iStockphoto.

An array list stores
a sequence of
values whose
size can change.

Syntax 7.4	 Array Lists

ArrayList<String> friends = new ArrayList<String>();

The index must be ≥ 0 and < friends.size().

An array list object of size 0

Use the
get and set methods
to access an element.

friends.add("Cindy");
String name = friends.get(i);
friends.set(i, "Harry");

Variable type Variable name

The add method
appends an element to the array list,

increasing its size.

To construct an array list: new ArrayList<typeName>()

To access an element: arraylistReference.get(index)
 arraylistReference.set(index, value)

Syntax

©
 d

ig
it

al
94

08
6/

iS
to

ck
ph

ot
o.

344  Chapter 7  Arrays and Array Lists

7.7.1  Declaring and Using Array Lists

The following statement declares an array list of strings:
ArrayList<String> names = new ArrayList<String>();

The ArrayList class is contained in the java.util package. In order to use array lists in
your program, you need to use the statement import java.util.ArrayList.

The type ArrayList<String> denotes an array list of String elements. The angle
brackets around the String type tell you that String is a type parameter. You can
replace String with any other class and get a different array list type. For that reason,
ArrayList is called a generic class. However, you cannot use primitive types as type
parameters—there is no ArrayList<int> or ArrayList<double>. Section 7.7.4 shows how
you can collect numbers in an array list.

It is a common error to forget the initialization:
ArrayList<String> names;
names.add("Harry"); // Error—names not initialized

Here is the proper initialization:
ArrayList<String> names = new ArrayList<String>();

Note the () after new ArrayList<String> on the right-hand side of the initialization. It
indicates that the constructor of the ArrayList<String> class is being called.

When the ArrayList<String> is first constructed, it has size 0. You use the add method
to add an element to the end of the array list.

names.add("Emily"); // Now names has size 1 and element "Emily"
names.add("Bob"); // Now names has size 2 and elements "Emily", "Bob"
names.add("Cindy"); // names has size 3 and elements "Emily", "Bob", and "Cindy"

The size increases after each call to add (see Figure 17). The size method yields the
current size of the array list.

To obtain an array list element, use the get method, not the [] operator. As with
arrays, index values start at 0. For example, names.get(2) retrieves the name with index
2, the third element in the array list:

String name = names.get(2);

As with arrays, it is an error to access a nonexistent element. A very common bounds
error is to use the following:

int i = names.size();
name = names.get(i); // Error

The last valid index is names.size() - 1.
To set an array list element to a new value, use the set method:
names.set(2, "Carolyn");

The ArrayList class
is a generic class:
ArrayList<Type>
collects elements of
the specified type.

Use the size method
to obtain the current
size of an array list.

Use the get and set
methods to access an
array list element at a
given index.

Figure 17  Adding an Array List Element with add

1 Before add 2 After add

2

ArrayList<String>

names =

"Bob"
"Emily"

3

Size increased

New element
added at end

ArrayList<String>

names =

"Cindy"
"Bob"

"Emily"

7.7  Array Lists   345

Figure 18 
Adding and
Removing
Elements in the
Middle of an
Array List

1 Before add
ArrayList<String>names =

"Carolyn"
"Bob"

"Emily"

2 After names.add(1, "Ann")
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily"
"Ann" Moved from index 1 to 2

New element
added at index 1

Moved from index 2 to 3

3 After names.remove(1)
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily" Moved from index 2 to 1

Moved from index 3 to 2

This call sets position 2 of the names array list to "Carolyn", overwriting whatever value
was there before.

The set method overwrites existing values. It is different from the add method,
which adds a new element to the array list.

You can insert an element in the middle of an array list. For example, the call
names.add(1, "Ann") adds a new element at position 1 and moves all elements with
index 1 or larger by one position. After each call to the add method, the size of the
array list increases by 1 (see Figure 18).

 Conversely, the remove method removes the element at a given position, moves all
elements after the removed element down by one position, and reduces the size of the
array list by 1. Part 3 of Figure 18 illustrates the result of names.remove(1).

With an array list, it is very easy to get a quick printout. Simply pass the array list
to the println method:

System.out.println(names); // Prints [Emily, Bob, Carolyn]

7.7.2  Using the Enhanced for Loop with Array Lists

You can use the enhanced for loop to visit all elements of an array list. For example,
the following loop prints all names:

ArrayList<String> names = . . . ;
for (String name : names)
{
 System.out.println(name);
}

This loop is equivalent to the following basic for loop:
for (int i = 0; i < names.size(); i++)
{

© Danijelm/iStockphoto.
An array list has
methods for adding
and removing ele­
ments in the middle.

Use the add and
remove methods to
add and remove
array list elements.

©
 D

an
ije

lm
/iS

to
ck

ph
ot

o.

346  Chapter 7  Arrays and Array Lists

 String name = names.get(i);
 System.out.println(name);
}

7.7.3  Copying Array Lists

As with arrays, you need to remember that array list variables hold references. Copy-
ing the reference yields two references to the same array list (see Figure 19).

ArrayList<String> friends = names;
friends.add("Harry");

Now both names and friends reference the same array list to which the string "Harry"
was added.

If you want to make a copy of an array list, construct the copy and pass the original
list into the constructor:

ArrayList<String> newNames = new ArrayList<String>(names);

Table 2 Working with Array Lists

ArrayList<String> names = new ArrayList<String>(); Constructs an empty array list that can hold strings.

names.add("Ann");
names.add("Cindy");

Adds elements to the end of the array list.

System.out.println(names); Prints [Ann, Cindy].

names.add(1, "Bob"); Inserts an element at index 1. names is now
[Ann, Bob, Cindy].

names.remove(0); Removes the element at index 0. names is now
[Bob, Cindy].

names.set(0, "Bill"); Replaces an element with a different value. names is
now [Bill, Cindy].

String name = names.get(i); Gets an element.

String last = names.get(names.size() - 1); Gets the last element.

ArrayList<Integer> squares = new ArrayList<Integer>();
for (int i = 0; i < 10; i++)
{
 squares.add(i * i);
}

Constructs an array list holding the first ten
squares.

Figure 19 
Copying an Array List
Reference

ArrayList<String>

"Emily"
"Bob"

"Carolyn"
"Harry"

names =

friends =

7.7  Array Lists   347

7.7.4  Wrappers and Auto-boxing

In Java, you cannot directly insert primitive type values—numbers, characters, or
boolean values—into array lists. For example, you cannot form an ArrayList<double>.
Instead, you must use one of the wrapper classes shown in the following table.

Primitive Type Wrapper Class

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

For example, to collect double values in an array list, you use an ArrayList<Double>.
Note that the wrapper class names start with uppercase letters, and that two of them
differ from the names of the corresponding primitive type: Integer and Character.

Conversion between primitive types and the corresponding wrapper classes is
automatic. This process is called auto-boxing (even though auto-wrapping would
have been more consistent).

For example, if you assign a double value to a Double variable, the number is auto-
matically “put into a box” (see Figure 20).

 Double wrapper = 29.95;

Conversely, wrapper values are automatically “unboxed” to primitive types:
double x = wrapper;

Because boxing and unboxing is automatic, you don’t need to think about it. Simply
remember to use the wrapper type when you declare array lists of numbers. From
then on, use the primitive type and rely on auto-boxing.

ArrayList<Double> values = new ArrayList<Double>();
values.add(29.95);
double x = values.get(0);

© sandoclr/iStockphoto.Like truffles that
must be in a wrapper
to be sold, a number
must be placed in a
wrapper to be stored
in an array list.

To collect numbers in
array lists, you must
use wrapper classes.

Figure 20  A Wrapper Class Variable

wrapper =

value =

Double

29.95

©
 s

an
do

cl
r/

iS
to

ck
ph

ot
o.

348  Chapter 7  Arrays and Array Lists

7.7.5  Using Array Algorithms with Array Lists

The array algorithms in Section 7.3 can be converted to array lists simply by using the
array list methods instead of the array syntax (see Table 3 on page 350). For example,
this code snippet finds the largest element in an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

Here is the same algorithm, now using an array list:
double largest = values.get(0);
for (int i = 1; i < values.size(); i++)
{
 if (values.get(i) > largest)
 {
 largest = values.get(i);
 }
}

7.7.6  Storing Input Values in an Array List

When you collect an unknown number of inputs, array lists are much easier to use
than arrays. Simply read inputs and add them to an array list:

ArrayList<Double> inputs = new ArrayList<Double>();
while (in.hasNextDouble())
{
 inputs.add(in.nextDouble());
}

7.7.7  Removing Matches

It is easy to remove elements from an array list, by calling the remove method. A com-
mon processing task is to remove all elements that match a particular condition. Sup-
pose, for example, that we want to remove all strings of length < 4 from an array list.

Of course, you traverse the array list and look for matching elements:
ArrayList<String> words = . . .;
for (int i = 0; i < words.size(); i++)
{
 String word = words.get(i);
 if (word.length() < 4)
 {
 Remove the element at index i.
 }
}

But there is a subtle problem. After you remove the element, the for loop increments
i, skipping past the next element.

7.7  Array Lists   349

Consider this concrete example, where words contains the strings "Welcome", "to",
"the", "island!". When i is 1, we remove the word "to" at index 1. Then i is incre-
mented to 2, and the word "the", which is now at position 1, is never examined.

 i words
 0 "Welcome", "to", "the", "island"
 1 "Welcome", "the", "island"
 2

We should not increment the index when removing a word. The appropriate
pseudocode is

If the element at index i matches the condition
	 Remove the element.
Else
	 Increment i.

Because we don’t always increment the index, a for loop is not appropriate for this
algorithm. Instead, use a while loop:

int i = 0;
while (i < words.size())
{
 String word = words.get(i);
 if (word.length() < 4)
 {
 words.remove(i);
 }
 else
 {
 i++;
 }
}

7.7.8  Choosing Between Array Lists and Arrays

For most programming tasks, array lists are easier to use than arrays. Array lists can
grow and shrink. On the other hand, arrays have a nicer syntax for element access and
initialization.

Which of the two should you choose? Here are some recommendations.

•	 If the size of a collection never changes, use an array.
•	 If you collect a long sequence of primitive type values and you are concerned

about efficiency, use an array.
•	 Otherwise, use an array list.

The following program shows how to mark the largest value in a sequence of values
stored in an array list. Note how the program is an improvement over the array ver-
sion on page 325. This program can process input sequences of arbitrary length.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjeo6code to down-
load a version of the
Student class that
uses an array list.

© Alex Slobodkin/iStockphoto.

350  Chapter 7  Arrays and Array Lists

Table 3 Comparing Array and Array List Operations

Operation Arrays Array Lists

Get an element. x = values[4]; x = values.get(4);

Replace an element. values[4] = 35; values.set(4, 35);

Number of elements. values.length values.size()

Number of filled elements. currentSize (companion
variable, see Section 7.1.4)

values.size()

Remove an element. See Section 7.3.6. values.remove(4);

Add an element, growing
the collection.

See Section 7.3.7. values.add(35);

Initializing a collection. int[] values = { 1, 4, 9 }; No initializer list syntax;
call add three times.

section_7/LargestInArrayList.java

1 import java.util.ArrayList;
2 import java.util.Scanner;
3
4 /**
5 This program reads a sequence of values and prints them, marking the largest value.
6 */
7 public class LargestInArrayList
8 {
9 public static void main(String[] args)

10 {
11 ArrayList<Double> values = new ArrayList<Double>();
12
13 // Read inputs
14
15 System.out.println("Please enter values, Q to quit:");
16 Scanner in = new Scanner(System.in);
17 while (in.hasNextDouble())
18 {
19 values.add(in.nextDouble());
20 }
21
22 // Find the largest value
23
24 double largest = values.get(0);
25 for (int i = 1; i < values.size(); i++)
26 {
27 if (values.get(i) > largest)
28 {
29 largest = values.get(i);
30 }
31 }
32
33 // Print all values, marking the largest
34
35 for (double element : values)
36 {

7.7  Array Lists   351

37 System.out.print(element);
38 if (element == largest)
39 {
40 System.out.print(" <== largest value");
41 }
42 System.out.println();
43 }
44 }
45 }

Program Run

Please enter values, Q to quit:
35 80 115 44.5 Q
35
80
115 <== largest value
44.5

35.	 Declare an array list of integers called primes that contains the first five prime
numbers (2, 3, 5, 7, and 11).

36.	 Given the array list primes declared in Self Check 35, write a loop to print its ele-
ments in reverse order, starting with the last element.

37.	 What does the array list names contain after the following statements?
ArrayList<String> names = new ArrayList<String>;
names.add("Bob");
names.add(0, "Ann");
names.remove(1);
names.add("Cal");

38.	 What is wrong with this code snippet?
ArrayList<String> names;
names.add(Bob);

39.	 Consider this method that appends the elements of one array list to another:
public void append(ArrayList<String> target, ArrayList<String> source)
{
 for (int i = 0; i < source.size(); i++)
 {
 target.add(source.get(i));
 }
}

What are the contents of names1 and names2 after these statements?
ArrayList<String> names1 = new ArrayList<String>();
names1.add("Emily");
names1.add("Bob");
names1.add("Cindy");
ArrayList<String> names2 = new ArrayList<String>();
names2.add("Dave");
append(names1, names2);

40.	 Suppose you want to store the names of the weekdays. Should you use an array
list or an array of seven strings?

41.	 The ch07/section_7 directory of your source code contains an alternate imple-
mentation of the problem solution in How To 7.1 on page 330. Compare the
array and array list implementations. What is the primary advantage of the latter?

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

352  Chapter 7  Arrays and Array Lists	 Testing Track

Practice It	 Now you can try these exercises at the end of the chapter: R7.14, R7.33, E7.17, E7.20.

Length and Size

Unfortunately, the Java syntax for determining the
number of elements in an array, an array list, and a
string is not at all consistent. It is a common error
to confuse these. You just have to remember the
correct syntax for every data type.

The Diamond Syntax

There is a convenient syntax enhancement for declaring array lists and other generic classes. In
a statement that declares and constructs an array list, you need not repeat the type parameter in
the constructor. That is, you can write

ArrayList<String> names = new ArrayList<>();

instead of

ArrayList<String> names = new ArrayList<String>();

This shortcut is called the “diamond syntax” because the empty brackets <> look like a dia-
mond shape.

For now, we will use the explicit syntax and include the type parameters with constructors.
In later chapters, we will switch to the diamond syntax.

7.8  Regression Testing
It is a common and useful practice to make a new test whenever you find a program
bug. You can use that test to verify that your bug fix really works. Don’t throw the
test away; feed it to the next version after that and all subsequent versions. Such a col-
lection of test cases is called a test suite.

You will be surprised how often a bug that you fixed will reappear in a future ver-
sion. This is a phenomenon known as cycling. Sometimes you don’t quite understand
the reason for a bug and apply a quick fix that appears to work. Later, you apply a
different quick fix that solves a second problem but makes the first problem appear
again. Of course, it is always best to think through what really causes a bug and fix the
root cause instead of doing a sequence of  “Band-Aid” solutions. If you don’t succeed
in doing that, however, you at least want to have an honest appraisal of how well the
program works. By keeping all old test cases around and testing them against every
new version, you get that feedback. The process of checking each version of a pro-
gram against a test suite is called regression testing.

How do you organize a suite of tests? An easy technique is to produce multiple
tester classes, such as ScoreTester1, ScoreTester2, and so on, where each program runs
with a separate set of test data. For example, here is a tester for the Student class:

public class ScoreTester1
{

Common Error 7.4

© John Bell/iStockphoto.

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Special Topic 7.5

© Eric Isselé/iStockphoto.

A test suite is a
set of tests for
repeated testing.

Testing Track 7.8  Regression Testing   353

 public static void main(String[] args)
 {
 Student fred = new Student(100);
 fred.addScore(10);
 fred.addScore(20);
 fred.addScore(5);
 System.out.println("Final score: " + fred.finalScore());
 System.out.println("Expected: 30");
 }
}

Another useful approach is to provide a generic tester, and feed it inputs from mul-
tiple files, as in the following.

section_8/ScoreTester.java

1 import java.util.Scanner;
2
3 public class ScoreTester
4 {
5 public static void main(String[] args)
6 {
7 Scanner in = new Scanner(System.in);
8 double expected = in.nextDouble();
9 Student fred = new Student(100);

10 while (in.hasNextDouble())
11 {
12 if (!fred.addScore(in.nextDouble()))
13 {
14 System.out.println("Too many scores.");
15 return;
16 }
17 }
18 System.out.println("Final score: " + fred.finalScore());
19 System.out.println("Expected: " + expected);
20 }
21 }

The program reads the expected result and the scores. By running the program with
different inputs, we can test different scenarios.

Of course, it would be tedious to type in the input values by hand every time the
test is executed. It is much better to save the inputs in a file, such as the following:

section_8/input1.txt

30
10
20
5

When running the program from a shell window, one can link the input file to the
input of a program, as if all the characters in the file had actually been typed by a user.
Type the following command into a shell window:

java ScoreTester < input1.txt

The program is executed, but it no longer reads input from the keyboard. Instead, the
System.in object (and the Scanner that reads from System.in) gets the input from the file
input1.txt. We discussed this process, called input redirection, in Special Topic 6.2.

Regression testing
involves repeating
previously run
tests to ensure that
known failures of
prior versions do
not appear in
new versions of
the software.

354  Chapter 7  Arrays and Array Lists	 Testing Track

The output is still displayed in the console window:

Program Run

Final score: 30
Expected: 30

You can also redirect output. To capture the program’s output in a file, use the
command

java ScoreTester < input1.txt > output1.txt

This is useful for archiving test cases.

42.	 Suppose you modified the code for a method. Why do you want to repeat tests
that already passed with the previous version of the code?

43.	 Suppose a customer of your program finds an error. What action should you
take beyond fixing the error?

44.	 Why doesn’t the ScoreTester program contain prompts for the inputs?

Practice It	 Now you can try these exercises at the end of the chapter: R7.35, R7.36.

Batch Files and Shell Scripts

If you need to perform the same tasks repeatedly on the command line, then it is worth learn-
ing about the automation features offered by your operating system.

Under Windows, you use batch files to execute a number of commands automatically. For
example, suppose you need to test a program by running three testers:

java ScoreTester1
java ScoreTester < input1.txt
java ScoreTester < input2.txt

Then you find a bug, fix it, and run the tests again. Now you need to type the three commands
once more. There has to be a better way. Under Windows, put the commands in a text file and
call it test.bat:

File test.bat

1 java ScoreTester1
2 java ScoreTester < input1.txt
3 java ScoreTester < input2.txt

Then you just type

test.bat

and the three commands in the batch file execute automatically.
Batch files are a feature of the operating system, not of Java. On Linux, Mac OS, and UNIX,

shell scripts are used for the same purpose. In this simple example, you can execute the com-
mands by typing

sh test.bat

There are many uses for batch files and shell scripts, and it is well worth it to learn more about
their advanced features, such as parameters and loops.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Programming Tip 7.3

© Eric Isselé/iStockphoto.

Testing Track 	 Chapter Summary  355

Computing & Society 7.2  The Therac-25 Incidents

Use arrays for collecting values.

•	 An array collects a sequence of values of the same type.
•	 Individual elements in an array are accessed by an integer index i, using the

notation array[i].
•	 An array element can be used like any variable.
•	 An array index must be at least zero and less than the size of the array.

The Therac-25 is a
computerized device

to deliver radiation treatment to cancer
patients (see the figure). Between June
1985 and January 1987, several of
these machines delivered serious over-
doses to at least six patients, killing
some of them and seriously maiming
the others.

The machines were controlled by
a computer program. Bugs in the pro-
gram were directly responsible for
the overdoses. According to Leveson
and Turner (“An Investigation of the
Therac-25 Accidents,” IEEE Computer,
July 1993, pp. 18–41), the program
was written by a single programmer,
who had since left the manufacturing
company producing the device and
could not be located. None of the com-
pany employees interviewed could say
anything about the educational level or
qualifications of the programmer.

The investigation by the federal
Food and Drug Administration (FDA)
found that the program was poorly
documented and that there was neither
a specification document nor a formal
test plan. (This should make you think.
Do you have a formal test plan for your
programs?)

The overdoses were caused by the
amateurish design of the software
that had to control different devices
concurrently, namely the keyboard,
the display, the printer, and of course
the radiation device itself. Synchroni-
zation and data sharing between the
tasks were done in an ad hoc way, even
though safe multitasking techniques
were known at the time. Had the pro-
grammer enjoyed a formal education
that involved these techniques, or

taken the effort to study the literature,
a safer machine could have been built.
Such a machine would have probably
involved a commercial multitasking
system, which might have required a
more expensive computer.

The same flaws were present in
the software controlling the prede-
cessor model, the Therac-20, but that
machine had hardware interlocks that
mechanically prevented overdoses.
The hardware safety devices were
removed in the Therac-25 and replaced
by checks in the software, presumably
to save cost.

Frank Houston of the FDA wrote in
1985, “A significant amount of software

for life-critical systems comes from
small firms, especially in the medical
device industry; firms that fit the pro-
file of those resistant to or uninformed
of the principles of either system safety
or software engineering.”

Who is to blame? The programmer?
The manager who not only failed to
ensure that the programmer was up to
the task but also didn’t insist on com-
prehensive testing? The hospitals that
installed the device, or the FDA, for not
reviewing the design process? Unfor-
tunately, even today there are no firm
standards for what constitutes a safe
software design process.

© Media Bakery.

Therac-25 unit

Treatment table

Motion
power switch

Therapy room
intercom

Room
emergency
switch

Door
interlock
switch

Beam
on/off light

Motion enable
switch (footswitch)

Display
terminal

TV monitor Printer
Control
console

Turntable
position
monitor

Room
emergency
switchesTV

camera

Typical Therac-25 Facility

C H A P T E R S U M M A R Y

© Luckie8/iStockphoto.

356  Chapter 7  Arrays and Array Lists

•	 A bounds error, which occurs if you supply an invalid array index, can cause your
program to terminate.

•	 Use the expression array.length to find the number of elements in an array.
•	 An array reference specifies the location of an array. Copying the reference yields

a second reference to the same array.
•	 Arrays can occur as method arguments and return values.
•	 With a partially filled array, keep a companion variable for the current size.
•	 Avoid parallel arrays by changing them into arrays of objects.

Know when to use the enhanced for loop.

•	 You can use the enhanced for loop to visit all elements of an array.
•	 Use the enhanced for loop if you do not need the index values in the loop body.

Know and use common array algorithms.

•	 When separating elements, don’t place a separator before the first element.
•	 A linear search inspects elements in sequence until a match is found.
•	 Before inserting an element, move elements to the end of the array starting with

the last one.

•	 Use a temporary variable when swapping two elements.
•	 Use the Arrays.copyOf method to copy the elements of an array into a new array.

Combine and adapt algorithms for solving a programming problem.

•	 By combining fundamental algorithms, you can solve complex
programming tasks.

•	 You should be familiar with the implementation of fundamental algorithms so
that you can adapt them.

Discover algorithms by manipulating physical objects.

•	 Use a sequence of coins, playing cards, or toys to visualize an array of values.
•	 You can use paper clips as position markers or counters.

Use two-dimensional arrays for data that is arranged in rows and columns.

•	 Use a two-dimensional array to store tabular data.
•	 Individual elements in a two-dimensional array are accessed by using two index

values, array[i][j].

Use array lists for managing collections whose size can change.

•	 An array list stores a sequence of values whose size can change.
•	 The ArrayList class is a generic class: ArrayList<Type> collects

elements of the specified type.
•	 Use the size method to obtain the current size of an array list.

© AlterYourReality/iStockphoto.

© yekorzh/iStockphoto.

© JenCon/iStockphoto.

© Trub/iStockphoto.

© digital94086/iStockphoto.

Review Exercises  357

•	 Use the get and set methods to access an array list element at a given index.
•	 Use the add and remove methods to add and remove array list elements.
•	 To collect numbers in array lists, you must use wrapper classes.

Describe the process of regression testing.

•	 A test suite is a set of tests for repeated testing.
•	 Regression testing involves repeating previously run tests to ensure that known

failures of prior versions do not appear in new versions of the software.

•• R7.1	 Carry out the following tasks with an array:
a.	Allocate an array a of ten integers.
b.	Put the number 17 as the initial element of the array.
c.	Put the number 29 as the last element of the array.
d.	Fill the remaining elements with –1.
e.	Add 1 to each element of the array.
f.	 Print all elements of the array, one per line.
g.	Print all elements of the array in a single line, separated by commas.

• R7.2	 What is an index of an array? What are the legal index values? What is a
bounds error?

• R7.3	 Write a program that contains a bounds error. Run the program. What happens on
your computer?

• R7.4	 Write a loop that reads ten numbers and a second loop that displays them in the
opposite order from which they were entered.

•• R7.5	 Write code that fills an array values with each set of numbers below.
a.	1	 2	 3	 4	 5	 6	 7	 8	 9	 10
b.	0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20
c.	1	 4	 9	 16	 25	 36	 49	 64	 81	 100
d.	0	 0	 0	 0	 0	 0	 0	 0	 0	 0
e.	1	 4	 9	 16	 9	 7	 4	 9	 11	
f.	 0	 1	 0 	 1 	 0 	 1 	 0 	 1 	 0 	 1
g.	0 	 1 	 2 	 3 	 4 	 0 	 1 	 2 	 3 	 4

© sandoclr/iStockphoto.

© Danijelm/iStockphoto.

java.lang.Boolean
java.lang.Double
java.lang.Integer
java.util.Arrays
 copyOf
 toString

java.util.ArrayList<E>
 add
 get
 remove
 set
 size

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

R E V I E W E X E R C I S E S

358  Chapter 7  Arrays and Array Lists

•• R7.6	 Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What is the value of total after the following loops complete?
a.	int total = 0;

for (int i = 0; i < 10; i++) { total = total + a[i]; }

b.	int total = 0;
for (int i = 0; i < 10; i = i + 2) { total = total + a[i]; }

c.	int total = 0;
for (int i = 1; i < 10; i = i + 2) { total = total + a[i]; }

d.	int total = 0;
for (int i = 2; i <= 10; i++) { total = total + a[i]; }

e.	int total = 0;
for (int i = 1; i < 10; i = 2 * i) { total = total + a[i]; }

f.	 int total = 0;
for (int i = 9; i >= 0; i--) { total = total + a[i]; }

g.	int total = 0;
for (int i = 9; i >= 0; i = i - 2) { total = total + a[i]; }

h.	int total = 0;
for (int i = 0; i < 10; i++) { total = a[i] - total; }

•• R7.7	 Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What are the contents of the array a after the following loops complete?
a.	for (int i = 1; i < 10; i++) { a[i] = a[i - 1]; }
b.	for (int i = 9; i > 0; i--) { a[i] = a[i - 1]; }
c.	for (int i = 0; i < 9; i++) { a[i] = a[i + 1]; }
d.	for (int i = 8; i >= 0; i--) { a[i] = a[i + 1]; }
e.	for (int i = 1; i < 10; i++) { a[i] = a[i] + a[i - 1]; }
f.	 for (int i = 1; i < 10; i = i + 2) { a[i] = 0; }
g.	for (int i = 0; i < 5; i++) { a[i + 5] = a[i]; }
h.	for (int i = 1; i < 5; i++) { a[i] = a[9 - i]; }

••• R7.8	 Write a loop that fills an array values with ten random numbers between 1 and 100.
Write code for two nested loops that fill values with ten different random numbers
between 1 and 100.

•• R7.9	 Write Java code for a loop that simultaneously computes both the maximum and
minimum of an array.

• R7.10	 What is wrong with each of the following code segments?
a.	int[] values = new int[10];

for (int i = 1; i <= 10; i++)
{
 values[i] = i * i;
}

b.	int[] values;
for (int i = 0; i < values.length; i++)
{
 values[i] = i * i;
}

Review Exercises  359

•• R7.11	 Write enhanced for loops for the following tasks.
a.	Printing all elements of an array in a single row, separated by spaces.
b.	Computing the maximum of all elements in an array.
c.	Counting how many elements in an array are negative.

•• R7.12	 Rewrite the following loops without using the enhanced for loop construct. Here,
values is an array of floating-point numbers.

a.	for (double x : values) { total = total + x; }
b.	for (double x : values) { if (x == target) { return true; } }
c.	int i = 0;

for (double x : values) { values[i] = 2 * x; i++; }

•• R7.13	 Rewrite the following loops using the enhanced for loop construct. Here, values is an
array of floating-point numbers.

a.	for (int i = 0; i < values.length; i++) { total = total + values[i]; }
b.	for (int i = 1; i < values.length; i++) { total = total + values[i]; }
c.	for (int i = 0; i < values.length; i++)

{
 if (values[i] == target) { return i; }
}

• R7.14	 What is wrong with each of the following code segments?
a.	ArrayList<int> values = new ArrayList<int>();
b.	ArrayList<Integer> values = new ArrayList();
c.	ArrayList<Integer> values = new ArrayList<Integer>;
d.	ArrayList<Integer> values = new ArrayList<Integer>();

for (int i = 1; i <= 10; i++)
{
 values.set(i - 1, i * i);
}

e.	ArrayList<Integer> values;
for (int i = 1; i <= 10; i++)
{
 values.add(i * i);
}

•• R7.15	 For the operations on partially filled arrays below, provide the header of a method.
Do not implement the methods.

a.	Sort the elements in decreasing order.
b.	Print all elements, separated by a given string.
c.	Count how many elements are less than a given value.
d.	Remove all elements that are less than a given value.
e.	Place all elements that are less than a given value in another array.

• R7.16	 Trace the flow of the loop in Section 7.3.4 with the given example. Show two col
umns, one with the value of i and one with the output.

• R7.17	 Consider the following loop for collecting all elements that match a condition; in
this case, that the element is larger than 100.

ArrayList<Double> matches = new ArrayList<Double>();
for (double element : values)
{

360  Chapter 7  Arrays and Array Lists

 if (element > 100)
 {
 matches.add(element);
 }
}

Trace the flow of the loop, where values contains the elements 110 90 100 120 80.
Show two columns, for element and matches.

• R7.18	 Trace the flow of the loop in Section 7.3.5, where values contains the elements 80
90 100 120 110. Show two columns, for pos and found. Repeat the trace when values
contains the elements 80 90 120 70.

•• R7.19	 Trace the algorithm for removing an element described in Section 7.3.6. Use an array
values with elements 110 90 100 120 80, and remove the element at index 2.

•• R7.20	 Give pseudocode for an algorithm that rotates the elements of
an array by one position, moving the initial element to the end
of the array, as shown at right.

•• R7.21	 Give pseudocode for an algorithm that removes all negative
values from an array, preserving the order of the remaining elements.

•• R7.22	 Suppose values is a sorted array of integers. Give pseudocode that describes how a
new value can be inserted so that the resulting array stays sorted.

••• R7.23	 A run is a sequence of adjacent repeated values. Give pseudocode for computing the
length of the longest run in an array. For example, the longest run in the array with
elements

1 2 5 5 3 1 2 4 3 2 2 2 2 3 6 5 5 6 3 1

has length 4.

••• R7.24	 What is wrong with the following method that aims to fill an array with random
numbers?

public void makeCombination(int[] values, int n)
{
 Random generator = new Random();
 int[] numbers = new int[values.length];
 for (int i = 0; i < numbers.length; i++)
 {
 numbers[i] = generator.nextInt(n);
 }
 values = numbers;
}

•• R7.25	 You are given two arrays denoting x- and y-coordinates of a set
of points in a plane. For plotting the point set, we need to know
the x- and y-coordinates of the smallest rectangle containing the
points. How can you obtain these values from the fundamental
algorithms in Section 7.3?

• R7.26	 Solve the quiz score problem described in Section 7.4 by sorting the array first. How
do you need to modify the algorithm for computing the total?

•• R7.27	 Solve the task described in Section 7.5 using an algorithm that removes and inserts
elements instead of switching them. Write the pseudocode for the algorithm, assum-
ing that methods for removal and insertion exist. Act out the algorithm with a

3 5 7 11 13 2

2 3 5 7 11 13

y

x

Review Exercises  361

sequence of coins and explain why it is less efficient than the swapping algorithm
developed in Section 7.5.

•• R7.28	 Develop an algorithm for finding the most frequently occurring value in an array of
numbers. Use a sequence of coins. Place paper clips below each coin that count how
many other coins of the same value are in the sequence. Give the pseudocode for an
algorithm that yields the correct answer, and describe how using the coins and paper
clips helped you find the algorithm.

•• R7.29	 Write Java statements for performing the following tasks with an array declared as

int[][] values = new int[ROWS][COLUMNS];

•	 Fill all entries with 0.
•	 Fill elements alternately with 0s and 1s in a checkerboard pattern.
•	 Fill only the elements in the top and bottom rows with zeroes.
•	 Compute the sum of all elements.
•	 Print the array in tabular form.

•• R7.30	 Write pseudocode for an algorithm that fills the first and last columns as well as the
first and last rows of a two-dimensional array of integers with –1.

• R7.31	 Section 7.7.7 shows that you must be careful about updating the index value when
you remove elements from an array list. Show how you can avoid this problem by
traversing the array list backwards.

•• R7.32	 True or false?
a.	All elements of an array are of the same type.
b.	Arrays cannot contain strings as elements.
c.	Two-dimensional arrays always have the same number of rows and columns.
d.	Elements of different columns in a two-dimensional array can have different

types.
e.	A method cannot return a two-dimensional array.
f.	 A method cannot change the length of an array argument.
g.	A method cannot change the number of columns of an argument that is a

two-dimensional array.

•• R7.33	 How do you perform the following tasks with array lists in Java?
a.	Test that two array lists contain the same elements in the same order.
b.	Copy one array list to another.
c.	Fill an array list with zeroes, overwriting all elements in it.
d.	Remove all elements from an array list.

• R7.34	 True or false?
a.	All elements of an array list are of the same type.
b.	Array list index values must be integers.
c.	Array lists cannot contain strings as elements.
d.	Array lists can change their size, getting larger or smaller.
e.	A method cannot return an array list.
f.	 A method cannot change the size of an array list argument.

362  Chapter 7  Arrays and Array Lists

• Testing R7.35	 Define the terms regression testing and test suite.

•• Testing R7.36	 What is the debugging phenomenon known as cycling? What can you do to avoid it?

•• E7.1	 Write a program that initializes an array with ten random integers and then prints
four lines of output, containing

•	 Every element at an even index.
•	 Every even element.
•	 All elements in reverse order.
•	 Only the first and last element.

• E7.2	 Modify the LargestInArray.java program in Section 7.3 to mark both the smallest and
the largest elements.

•• E7.3	 Write a method sumWithoutSmallest that computes the sum of an array of values,
except for the smallest one, in a single loop. In the loop, update the sum and the
smallest value. After the loop, return the difference.

• E7.4	 Add a method removeMin to the Student class of Section 7.4 that removes the minimum
score without calling other methods.

•• E7.5	 Compute the alternating sum of all elements in an array. For example, if your pro
gram reads the input

1  4  9  16  9  7  4  9  11
then it computes

1 – 4 + 9 – 16 + 9 – 7 + 4 – 9 + 11 = –2

• E7.6	 Write a method that reverses the sequence of elements in an array. For example, if
you call the method with the array

1  4  9  16  9  7  4  9  11
then the array is changed to

11  9  4  7  9  16  9  4  1

••• E7.7	 Write a program that produces ten random permutations of the numbers 1 to 10. To
generate a random permutation, you need to fill an array with the numbers 1 to 10
so that no two entries of the array have the same contents. You could do it by brute
force, generating random values until you have a value that is not yet in the array.
But that is inefficient. Instead, follow this algorithm:

Make a second array and fill it with the numbers 1 to 10.
Repeat 10 times
	 Pick a random element from the second array.
	 Remove it and append it to the permutation array.

• E7.8	 Write a method that implements the algorithm developed in Section 7.5.

•• E7.9	 Write a class DataSet that stores a number of values of type double. Provide a constructor

public DataSet(int maximumNumberOfValues)

and a method

public void add(double value)

P R A C T I C E E X E R C I S E S

Practice Exercises  363

that adds a value, provided there is still room.
Provide methods to compute the sum, average, maximum, and minimum value.

•• E7.10	 Write array methods that carry out the following tasks for an array of integers by
completing the ArrayMethods class below. For each method, provide a test program.

public class ArrayMethods
{
 private int[] values;
 public ArrayMethods(int[] initialValues) { values = initialValues; }
 public void swapFirstAndLast() { . . . }
 public void shiftRight() { . . . }
 . . .
}

a.	Swap the first and last elements in the array.
b.	Shift all elements to the right by one and move the last element into the first

position. For example, 1 4 9 16 25 would be transformed into 25 1 4 9 16.
c.	Replace all even elements with 0.
d.	Replace each element except the first and last by the larger of its two neighbors.
e.	Remove the middle element if the array length is odd, or the middle two

elements if the length is even.
f.	 Move all even elements to the front, otherwise preserving the order of the

elements.

g.	Return the second-largest element in the array.
h.	Return true if the array is currently sorted in increasing order.
i.	 Return true if the array contains two adjacent duplicate elements.
j.	 Return true if the array contains duplicate elements (which need not be adjacent).

•• E7.11	 Consider the following class:
public class Sequence
{
 private int[] values;
 public Sequence(int size) { values = new int[size]; }
 public void set(int i, int n) { values[i] = n; }
 public int get(int i) { return values[i]; }
 public int size() { return values.length; }
}

Add a method
public boolean equals(Sequence other)

that checks whether two sequences have the same values in the same order.

•• E7.12	 Add a method
public boolean sameValues(Sequence other)

to the Sequence class of Exercise E7.11 that checks whether two sequences have the
same values in some order, ignoring duplicates. For example, the two sequences

1  4  9  16  9  7  4  9  11
and

11  11  7  9  16  4  1
would be considered identical. You will probably need one or more helper methods.

364  Chapter 7  Arrays and Array Lists

••• E7.13	 Add a method
public boolean isPermutationOf(Sequence other)

to the Sequence class of Exercise E7.11 that checks whether two sequences have the
same values in some order, with the same multiplicities. For example,

1  4  9  16  9  7  4  9  11
is a permutation of

11  1  4  9  16  9  7  4  9
but

1  4  9  16  9  7  4  9  11
is not a permutation of

11  11  7  9  16  4  1  4  9
You will probably need one or more helper methods.

•• E7.14	 Add a method
public Sequence sum(Sequence other)

to the Sequence class of Exercise E7.11 that yields the sum of this sequence and
another. If the sequences don’t have the same length, assume that the missing ele-
ments are zero. For example, the sum of

1  4  9  16  9  7  4  9  11
and

11  11  7  9  16  4  1
is the sequence

12  15  16  25  25  11  5  9  11

•• E7.15	 Write a program that generates a sequence of 20 random values between 0 and 99 in
an array, prints the sequence, sorts it, and prints the sorted sequence. Use the sort
method from the standard Java library.

•• E7.16	 Add a method to the Table class below that computes the average of the neighbors of
a table element in the eight directions shown in Figure 15:

public double neighborAverage(int row, int column)

However, if the element is located at the boundary of the array, include only the
neighbors that are in the table. For example, if row and column are both 0, there are
only three neighbors.

public class Table
{
 private int[][] values;
 public Table(int rows, int columns) { values = new int[rows][columns]; }
 public void set(int i, int j, int n) { values[i][j] = n; }
}

•• E7.17	 Given the Table class of Exercise E7.16 , add a method that returns the sum of the ith
row (if horizontal is true) or column (if horizontal is false):

public double sum(int i, boolean horizontal)

•• E7.18	 Write a program that reads a sequence of input values and displays a bar chart of the
values, using asterisks, like this:

**

Practice Exercises  365

You may assume that all values are positive. First figure out the maximum value.
That value’s bar should be drawn with 40 asterisks. Shorter bars should use propor-
tionally fewer asterisks.

••• E7.19	 Repeat Exercise E7.17, but make the bars vertical, with the tallest bar twenty
asterisks high.

 *
 *
 *
 *
 *
 *
 **

••• E7.20	 Improve the program of Exercise E7.17 to work correctly when the data set contains
negative values.

•• E7.21	 Improve the program of Exercise E7.17 by adding captions for each bar. Prompt the
user for the captions and data values. The output should look like this:

 Egypt **********************
 France **
 Japan ****************************
 Uruguay **************************
Switzerland **************

• E7.22	 Consider the following class:
public class Sequence
{
 private ArrayList<Integer> values;
 public Sequence() { values = new ArrayList<Integer>(); }
 public void add(int n) { values.add(n); }
 public String toString() { return values.toString(); }
}

Add a method
public Sequence append(Sequence other)

that creates a new sequence, appending this and the other sequence, without modify-
ing either sequence. For example, if a is

1  4  9  16
and b is the sequence

9  7  4  9  11
then the call a.append(b) returns the sequence

1  4  9  16  9  7  4  9  11
without modifying a or b.

•• E7.23	 Add a method
public Sequence merge(Sequence other)

to the Sequence class of Exercise E7.21 that merges two sequences, alternating ele-
ments from both sequences. If one sequence is shorter than the other, then alternate

366  Chapter 7  Arrays and Array Lists

as long as you can and then append the remaining elements from the longer
sequence. For example, if a is

1  4  9  16
and b is

9  7  4  9  11
then a.merge(b) returns the sequence

1  9  4  7  9  4  16  9  11
without modifying a or b.

•• E7.24	 Add a method
public Sequence mergeSorted(Sequence other)

to the Sequence class of Exercise E7.21 that merges two sorted sequences, producing a
new sorted sequence. Keep an index into each sequence, indicating how much of it
has been processed already. Each time, append the smallest unprocessed value from
either sequence, then advance the index. For example, if a is

1  4  9  16
and b is

4  7  9  9  11
then a.mergeSorted(b) returns the sequence

1  4  4  7  9  9  9  11  16
If a or b is not sorted, merge the longest prefixes of a and b that are sorted.

•• P7.1	 A run is a sequence of adjacent repeated values. Write a program that generates a
sequence of 20 random die tosses in an array and that prints the die values, marking
the runs by including them in parentheses, like this:

1 2 (5 5) 3 1 2 4 3 (2 2 2 2) 3 6 (5 5) 6 3 1

Use the following pseudocode:

Set a boolean variable inRun to false.
For each valid index i in the array
	 If inRun
		 If values[i] is different from the preceding value
			 Print).
			 inRun = false.
	 If not inRun
		 If values[i] is the same as the following value
			 Print (.
			 inRun = true.
	 Print values[i].
If inRun, print).

•• P7.2	 Write a program that generates a sequence of 20 random die tosses in an array and
that prints the die values, marking only the longest run, like this:

1 2 5 5 3 1 2 4 3 (2 2 2 2) 3 6 5 5 6 3 1

If there is more than one run of maximum length, mark the first one.

P R O G R A M M I N G P R O J E C T S

Programming Projects  367

•• P7.3	 It is a well-researched fact that men in a restroom generally prefer to maximize
their distance from already occupied stalls, by occupying the middle of the longest
sequence of unoccupied places.
For example, consider the situation where ten stalls are empty.

_ _ _ _ _ _ _ _ _ _

The first visitor will occupy a middle position:
_ _ _ _ _ X _ _ _ _

The next visitor will be in the middle of the empty area at the left.
_ _ X _ _ X _ _ _ _

Write a program that reads the number of stalls and then prints out diagrams in the
format given above when the stalls become filled, one at a time. Hint: Use an array of
boolean values to indicate whether a stall is occupied.

••• P7.4	 In this assignment, you will model the game of Bulgarian Solitaire. The game starts
with 45 cards. (They need not be playing cards. Unmarked index cards work just as
well.) Randomly divide them into some number of piles of random size. For exam
ple, you might start with piles of size 20, 5, 1, 9, and 10. In each round, you take one
card from each pile, forming a new pile with these cards. For example, the sample
starting configuration would be transformed into piles of size 19, 4, 8, 9, and 5. The
solitaire is over when the piles have size 1, 2, 3, 4, 5, 6, 7, 8, and 9, in some order. (It
can be shown that you always end up with such a configuration.)
In your program, produce a random starting configuration and print it. Then keep
applying the solitaire step and print the result. Stop when the solitaire final configu-
ration is reached.

••• P7.5	 Magic squares. An n × n matrix that is filled with the numbers
1, 2, 3, . . ., n2 is a magic square if the sum of the elements in each row,
in each column, and in the two diagonals is the same value.
Write a program that reads in 16 values from the keyboard and tests
whether they form a magic square when put into a 4 × 4 array.
You need to test two features:

1.	Does each of the numbers 1, 2, ..., 16 occur in the user input?
2.	When the numbers are put into a square, are the sums of the rows, columns,

and diagonals equal to each other?

••• P7.6	 Implement the following algorithm to construct magic n × n squares; it works only if
n is odd.

Set row = n - 1, column = n / 2.
For k = 1 ... n * n
	 Place k at [row][column].
	 Increment row and column.
	 If the row or column is n, replace it with 0.
	 If the element at [row][column] has already been filled
		 Set row and column to their previous values.
		 Decrement row.

Here is the 5 × 5 square that you get if you follow this method:
Write a program whose input is the number n and whose output is the magic square
of order n if n is odd.

4 15 14 1

9 6 7 12

5 10 11 8

16 3 2 13

17 24 1 8

23 5 7 14

4 6 13 20

10 12 19 21

15

16

22

3

11 18 25 2 9

368  Chapter 7  Arrays and Array Lists

•• P7.7	 A theater seating chart is implemented as a two-dimensional array of ticket prices,
like this:

10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 20 20 20 20 20 20 10 10
10 10 20 20 20 20 20 20 10 10
10 10 20 20 20 20 20 20 10 10
20 20 30 30 40 40 30 30 20 20
20 30 30 40 50 50 40 30 30 20
30 40 50 50 50 50 50 50 40 30

Write a program that prompts users to pick either a seat or a price. Mark sold seats
by changing the price to 0. When a user specifies a seat, make sure it is available.
When a user specifies a price, find any seat with that price.

••• P7.8	 Write a program that plays tic-tac-toe. The tic-tac-toe
game is played on a 3 × 3 grid as in the photo at right. The
game is played by two players, who take turns. The first
player marks moves with a circle, the second with a cross.
The player who has formed a horizontal, vertical, or
diagonal sequence of three marks wins. Your program
should draw the game board, ask the user for the coordi-
nates of the next mark, change the players after every
successful move, and pronounce the winner.

••• P7.9	 In this assignment, you will implement a simulation of a popular casino game usually
called video poker. The card deck contains 52 cards, 13 of each suit. At the beginning
of the game, the deck is shuffled. You need to devise a fair method for shuffling. (It
does not have to be efficient.) The player pays a token for each game. Then the top
five cards of the deck are presented to the player. The player can reject none, some,
or all of the cards. The rejected cards are replaced from the top of the deck. Now the
hand is scored. Your program should pronounce it to be one of the following:

•	 No pair—The lowest hand, containing five separate cards that do not match up
to create any of the hands below.

•	 One pair—Two cards of the same value, for example two queens. Payout: 1
•	 Two pairs—Two pairs, for example two queens and two 5’s. Payout: 2
•	 Three of a kind—Three cards of the same value, for example three queens.

Payout: 3
•	 Straight—Five cards with consecutive values, not necessarily of the same suit,

such as 4, 5, 6, 7, and 8. The ace can either precede a 2 or follow a king. Payout: 4
•	 Flush—Five cards, not necessarily in order, of the same suit. Payout: 5
•	 Full House—Three of a kind and a pair, for example three queens and two 5’s.

Payout: 6
•	 Four of a Kind—Four cards of the same value, such as four queens. Payout: 25
•	 Straight Flush—A straight and a flush: Five cards with consecutive values of

the same suit. Payout: 50
•	 Royal Flush—The best possible hand in poker. A 10, jack, queen, king, and ace,

all of the same suit. Payout: 250

© lepas2004/iStockphoto.

© Kathy Muller/iStockphoto.

©
 le

pa
s2

00
4/

iS
to

ck
ph

ot
o.

©
 K

at
hy

 M
ul

le
r/

iS
to

ck
ph

ot
o.

Programming Projects  369

••• P7.10	 The Game of Life is a well-known mathematical game that gives rise to amazingly
complex behavior, although it can be specified by a few simple rules. (It is not
actually a game in the traditional sense, with players competing for a win.) Here are
the rules. The game is played on a rectangular board. Each square can be either
empty or occupied. At the beginning, you can specify empty and occupied cells in
some way; then the game runs automatically. In each
generation, the next generation is computed. A new cell is
born on an empty square if it is surrounded by exactly
three occupied neighbor cells. A cell dies of overcrowding
if it is surrounded by four or more neighbors, and it dies of
loneliness if it is surrounded by zero or one neighbor. A
neighbor is an occupant of an adjacent square to the left,
right, top, or bottom or in a diagonal direction. Figure 21
shows a cell and its neighbor cells.

Many configurations show interesting behavior when subjected to these rules.
Figure 22 shows a glider, observed over five generations. After four generations, it is
transformed into the identical shape, but located one square to the right and below.

One of the more amazing configurations is the glider gun: a complex collection of
cells that, after 30 moves, turns back into itself and a glider (see Figure 23).
Program the game to eliminate the drudgery of computing successive generations by
hand. Use a two-dimensional array to store the rectangular configuration. Write a
program that shows successive generations of the game. Ask the user to specify the
original configuration, by typing in a configuration of spaces and o characters.

Cell

Neighbors

Figure 21 
Neighborhood of a Cell

Figure 22  Glider

Generation 0 Generation 1 Generation 2 Generation 3 Generation 4

Figure 23  Glider Gun

Generation 0 Generation 30 Generation 60 Generation 90 Generation 120 Generation 150

370  Chapter 7  Arrays and Array Lists

•• Business P7.11	 A pet shop wants to give a discount to its
clients if they buy one or more pets and at
least five other items. The discount is
equal to 20 percent of the cost of the other
items, but not the pets.
Use a class Item to describe an item, with
any needed methods and a constructor

public Item(double price, boolean isPet, int quantity)

An invoice holds a collection of Item objects; use an array or array list to store them.
In the Invoice class, implement methods

public void add(Item anItem)
public double getDiscount()

Write a program that prompts a cashier to enter each price and quantity, and then a Y
for a pet or N for another item. Use a price of –1 as a sentinel. In the loop, call the add
method; after the loop, call the getDiscount method and display the returned value.

•• Business P7.12	 A supermarket wants to reward its best customer of each day, showing the cus-
tomer’s name on a screen in the supermarket. For that purpose, the store keeps an
ArrayList<Customer>. In the Store class, implement methods

public void addSale(String customerName, double amount)
public String nameOfBestCustomer()

to record the sale and return the name of the customer with the largest sale.
Write a program that prompts the cashier to enter all prices and names, adds them to
a Store object, and displays the best customer’s name. Use a price of 0 as a sentinel.

••• Business P7.13	 Improve the program of Exercise P7.12 so that it displays the top customers, that
is, the topN customers with the largest sales, where topN is a value that the user of the
program supplies. Implement a method

public ArrayList<String> nameOfBestCustomers(int topN)

If there were fewer than topN customers, include all of them.

•• Science P7.14	 Sounds can be represented by an array of “sample
values” that describe the intensity of the sound
at a point in time. The program in ch07/sound of
your companion code reads a sound file (in WAV
format), processes the sample values, and shows
the result. Your task is to process the sound by
introducing an echo. For each sound value, add
the value from 0.2 seconds ago. Scale the result so
that no value is larger than 32767.

••• Science P7.15	 You are given a two-dimensional array of values that give the height of a terrain at
different points in a square. Write a constructor

public Terrain(double[][] heights)

and a method
public void printFloodMap(double waterLevel)

that prints out a flood map, showing which of the points in the terrain would be
flooded if the water level was the given value.

© joshblake/iStockphoto.

© GordonHeeley/iStockphoto.

©
 jo

sh
bl

ak
e/

iS
to

ck
ph

ot
o.

©
 G

or
do

nH
ee

le
y/

iS
to

ck
ph

ot
o.

Programming Projects  371

In the flood map, print a * for each flooded point and a space for each point that is
not flooded.
Here is a sample map:

* * * * * *
* * * * * * * *
* * * * * *
* * * * * *
* * * * * * * *
* * * * * * * * * *
* * * * *
* * * * * *
 * *
 * * *

Then write a program that reads one hundred terrain height values and shows how
the terrain gets flooded when the water level increases in ten steps from the lowest
point in the terrain to the highest.

•• Science P7.16	 Sample values from an experiment often need to be smoothed out. One simple
approach is to replace each value in an array with the average of the value and its two
neighboring values (or one neighboring value if it is at either end of the array). Given
a class Data with instance fields

private double[] values;
private double valuesSize;

implement a method
public void smooth()

that carries out this operation. You should not create another array in your solution.

••• Science P7.17	 Write a program that models the movement of an object with mass m that is attached
to an oscillating spring. When a spring is displaced from its equilibrium position by
an amount x, Hooke’s law states that the restoring force is

F = –kx
where k is a constant that depends on the spring. (Use
10 N /m for this simulation.)
Start with a given displacement x (say, 0.5 meter). Set the
initial velocity v to 0. Compute the acceleration a from
Newton’s law (F = ma) and Hooke’s law, using a mass of
1 kg. Use a small time interval Δt = 0.01 second. Update the
velocity––it changes by aΔt. Update the displacement––it
changes by vΔt.
Every ten iterations, plot the spring displacement as a
bar, where 1 pixel represents 1 cm, as shown here.

•• Graphics P7.18	 Generate the image of a checkerboard.

© nicolamargaret/iStockphoto.

x

F

Unstretched
spring

©
 n

ic
ol

am
ar

ga
re

t/
iS

to
ck

ph
ot

o.

372  Chapter 7  Arrays and Array Lists

• Graphics P7.19	 Generate the image of a sine wave. Draw a line of pixels for every five degrees.

• Graphics P7.20	 Implement a class Cloud that contains an array list of Point2D.Double objects. Support
methods

public void add(Point2D.Double aPoint)
public void draw(Graphics2D g2)

Draw each point as a tiny circle. Write a graphical application that draws a cloud of
100 random points.

•• Graphics P7.21	 Implement a class Polygon that contains an array list of Point2D.Double objects. Support
methods

public void add(Point2D.Double aPoint)
public void draw(Graphics2D g2)

Draw the polygon by joining adjacent points with a line, and then closing it up by
joining the end and start points. Write a graphical application that draws a square
and a pentagon using two Polygon objects.

• Graphics P7.22	 Write a class Chart with methods
public void add(int value)
public void draw(Graphics2D g2)

that displays a stick chart of the added values, like this:
You may assume that the values are pixel positions.

•• Graphics P7.23	 Write a class BarChart with methods
public void add(double value)
public void draw(Graphics2D g2)

that displays a bar chart of the added values. You may assume that all added values
are positive. Stretch the bars so that they fill the entire area of the screen. You must
figure out the maximum of the values, then scale each bar.

••• Graphics P7.24	 Improve the BarChart class of Exercise P7.23 to work correctly when the data con
tains negative values.

•• Graphics P7.25	 Write a class PieChart with methods
public void add(double value)
public void draw(Graphics2D g2)

that displays a pie chart of the added values. Assume that all data values are positive.

Answers to Self-Check Questions  373

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 int[] primes = { 2, 3, 5, 7, 11 };
2.	 2, 3, 5, 3, 2
3.	 3, 4, 6, 8, 12
4.	 values[0] = 10;

values[9] = 10; or better:
values[values.length - 1] = 10;

5.	 String[] words = new String[10];
6.	 String[] words = { "Yes", "No" };
7.	 No. Because you don’t store the values, you

need to print them when you read them. But
you don’t know where to add the <= until you
have seen all values.

8.	 public class Lottery
{
 public int[] getCombination(int n) { . . . }
 . . .
}

9.	 It counts how many elements of values are
zero.

10.	 for (double x : values)
{
 System.out.println(x);
}

11.	 double product = 1;
for (double f : factors)
{
 product = product * f;
}

12.	 The loop writes a value into values[i]. The
enhanced for loop does not have the index
variable i.

13.	 20 <== largest value
10
20 <== largest value

14.	 int count = 0;
for (double x : values)
{
 if (x == 0) { count++; }
}

15.	 If all elements of values are negative, then the
result is incorrectly computed as 0.

16.	 for (int i = 0; i < values.length; i++)
{
 System.out.print(values[i]);
 if (i < values.length - 1)
 {
 System.out.print(" | ");
 }

}

Now you know why we set up the loop the
other way.

17.	 If the array has no elements, then the program
terminates with an exception.

18.	 If there is a match, then pos is incremented
before the loop exits.

19.	 This loop sets all elements to values[pos].
20.	 Use the first algorithm. The order of elements

does not matter when computing the sum.
21.	 Find the minimum value.

Calculate the sum.
Subtract the minimum value.

22.	 Use the algorithm for counting matches (Sec-
tion 6.7.2) twice, once for counting the posi-
tive values and once for counting the negative
values.

23.	 You need to modify the algorithm in Section
7.3.4.
boolean first = true;
for (int i = 0; i < values.length; i++)
{
 if (values[i] > 0))
 {
 if (first) { first = false; }
 else { System.out.print(", "); }
 }
 System.out.print(values[i]);
}

Note that you can no longer use i > 0 as the
criterion for printing a separator.

24.	 Use the algorithm to collect all positive ele-
ments in an array, then use the algorithm in
Section 7.3.4 to print the array of matches.

25.	 The paperclip for i assumes positions 0, 1, 2,
3. When i is incremented to 4, the condition
i < size / 2 becomes false, and the loop ends.
Similarly, the paperclip for j assumes positions
4, 5, 6, 7, which are the valid positions for the
second half of the array.

coins: © jamesbenet/iStockphoto; dollar coins: © JordiDelgado/iStockphoto; paperclips: © Yvan Dube/iStockphoto.(coins) © jamesbenet/iStockphoto; (dollar coins) JordiDelgado/
iStockphoto; (paperclip) © Yvan Dube/iStockphoto.

374  Chapter 7  Arrays and Array Lists

26.	 It reverses the elements in the array.
27.	 Here is one solution. The basic idea is to move

all odd elements to the end. Put one paper clip
at the beginning of the array and one at the
end. If the element at the first paper clip is odd,
swap it with the one at the other paper clip and
move that paper clip to the left. Otherwise,
move the first paper clip to the right. Stop
when the two paper clips meet. Here is the
pseudocode:

i = 0
j = size - 1
While (i < j)
	 If (a[i] is odd)
		 Swap elements at positions i and j.
		 j--
	 Else
		 i++

28.	 Here is one solution. The idea is to remove
all odd elements and move them to the end.
The trick is to know when to stop. Nothing is
gained by moving odd elements into the area
that already contains moved elements, so we
want to mark that area with another paper clip.

i = 0
moved = size
While (i < moved)
	 If (a[i] is odd)
		 Remove the element at position i and add it

		 at the end.
		 moved--

29.	 When you read inputs, you get to see values
one at a time, and you can’t peek ahead. Pick-
ing cards one at a time from a deck of cards
simulates this process better than looking at a
sequence of items, all of which are revealed.

30.	 You get the total number of gold, silver, and
bronze medals in the competition. In our
example, there are four of each.

31.	 for (int i = 0; i < 8; i++)
{
 for (int j = 0; j < 8; j++)
 {
 board[i][j] = (i + j) % 2;
 }
}

32.	 String[][] board = new String[3][3];
33.	 board[0][2] = "x";
34.	 board[0][0], board[1][1], board[2][2]
35.	 ArrayList<Integer> primes =

 new ArrayList<Integer>();
primes.add(2);
primes.add(3);
primes.add(5);
primes.add(7);
primes.add(11);

36.	 for (int i = primes.size() - 1; i >= 0; i--)
{
 System.out.println(primes.get(i));
}

37.	 "Ann", "Cal"
38.	 The names variable has not been initialized.
39.	 names1 contains "Emily", "Bob", "Cindy", "Dave";

names2 contains "Dave"
40.	 Because the number of weekdays doesn’t

change, there is no disadvantage to using an
array, and it is easier to initialize:
String[] weekdayNames = { "Monday", "Tuesday",
 "Wednesday", "Thursday", “Friday”,
 "Saturday", "Sunday" };

41.	 Reading inputs into an array list is much easier.
42.	 It is possible to introduce errors when modify-

ing code.
43.	 Add a test case to the test suite that verifies that

the error is fixed.
44.	 There is no human user who would see the

prompts because input is provided from a file.

Rolling the Dice   WE1

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 1	 Decompose your task into steps.

Our first try at decomposition simply echoes the problem statement:

Read the die values.
Count how often the values 1, 2, ..., 6 appear.
Print the counts.

But let’s think about the task a little more. This decomposition suggests that we first read and
store all die values. Do we really need to store them? After all, we only want to know how
often each face value appears. If we keep an array of counters, we can discard each input after
incrementing the counter.

This refinement yields the following outline:

For each input value
	 Increment the corresponding counter.
Print the counters.

Step 2	 Determine which algorithm(s) you need.

We don’t have a ready-made algorithm for reading inputs and incrementing a counter, but it is
straightforward to develop one. Suppose we read an input into value. This is an integer between
1 and 6. If we have an array counters of length 6, then we simply call

counters[value - 1]++;

Alternatively, we can use an array of seven integers, “wasting” the element counters[0]. That
trick makes it easier to update the counters. When reading an input value, we simply execute

counters[value]++; // value is between 1 and 6

That is, we create the array as

counters = new int[sides + 1];

Why introduce a sides variable? Suppose you later changed your mind and wanted to investi-
gate 12-sided dice:

© Ryan Ruffatti/iStockphoto.Then the program can simply be changed by setting sides to 12.

© Tom Horyn/iStockphoto.

Worked Example 7.1	 Rolling the Dice

Problem Statement  Your task is to analyze whether a die is fair
by counting how often the values 1, 2, ..., 6 appear. Your input is a
sequence of die toss values, and you should print a table with the
frequencies of each die value.

© ktsimage/iStockphoto.

© Alex Slobodkin/iStockphoto.

©
 k

ts
im

ag
e/

iS
to

ck
ph

ot
o.

©
 R

ya
n

R
uf

fa
tt

i/i
St

oc
kp

ho
to

.

WE2  Chapter 7  Arrays and Array Lists

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

The only remaining task is to print the counts. A typical output might look like this:

1: 3
2: 3
3: 2
4: 2
5: 2
6: 0

We haven’t seen an algorithm for this exact output format. It is similar to the basic loop for
printing all elements:

for (int element : counters)
{
 System.out.println(element);
}

However, that loop is not appropriate for two reasons. First, it displays the unused 0 entry.
The “enhanced” for loop is no longer suitable if we want to skip that entry. We need a tradi-
tional for loop instead:

for (int i = 1; i < counters.length; i++)
{
 System.out.println(counters[i]);
}

This loop prints the counter values, but it doesn’t quite match the sample output. We also want
the corresponding face values:

for (int i = 1; i < counters.length; i++)
{
 System.out.printf("%2d: %4d\n", i, counters[i]);
}

Step 3	 Use methods to structure your program.

We will provide a method for each step:
•	 void countInputs()
•	 void printCounters()
The main method calls these methods:

public class DiceAnalyzer
{
 public static void main(String[] args)
 {
 final int SIDES = 6;
 Dice dice = new Dice(SIDES);
 dice.countInputs();
 dice.printCounters();
 }
}

The countInputs method reads all inputs and increments the matching counters. The print-
Counters method prints the value of the faces and counters, as already described.

Step 4	 Assemble and test the program.

The listing at the end of this section shows the complete program. There is one notable feature
that we have not previously discussed. When updating a counter

counters[value]++;

we want to be sure that the user did not provide a wrong input which would cause an array
bounds error. Therefore, we reject inputs < 1 or > sides.

Rolling the Dice   WE3

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

The following table shows test cases and their expected output. To save space, we only
show the counters in the output.

Test Case Expected Output Comment

1 2 3 4 5 6 1 1 1 1 1 1 Each number occurs once.

1 2 3 1 1 1 0 0 0 Numbers that don’t appear should
have counts of zero.

1 2 3 1 2 3 4 2 2 2 1 0 0 The counters should reflect how often
each input occurs.

(No input) 0 0 0 0 0 0 This is a legal input; all counters are
zero.

0 1 2 3 4 5 6 7 Error Each input should be between 1 and 6.

Here’s the complete program:

worked_example_1/Dice.java

1 import java.util.Scanner;
2
3 /**
4 This program reads a sequence of die toss values and prints how many times
5 each value occurred.
6 */
7 public class Dice
8 {
9 private int[] counters;

10
11 public Dice(int sides)
12 {
13 counters = new int[SIDES + 1]; // counters[0] is not used
14 }
15
16 public void countInputs()
17 {
18 System.out.println("Please enter values, Q to quit:");
19 Scanner in = new Scanner(System.in);
20 while (in.hasNextInt())
21 {
22 int value = in.nextInt();
23
24 // Increment the counter for the input value
25
26 if (1 <= value && value <= counters.length)
27 {
28 counters[value]++;
29 }
30 else
31 {
32 System.out.println(value + " is not a valid input.");
33 }
34 }
35 }
36

WE4  Chapter 7  Arrays and Array Lists

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

37 public void printCounters()
38 {
39 for (int i = 1; i < counters.length; i++)
40 {
41 System.out.printf("%2d: %4d\n", i, counters[i]);
42 }
43 }
44 }

worked_example_1/DiceAnalyzer

45 public class DiceAnalyzer
46 {
47 public static void main(String[] args)
48 {
49 final int SIDES = 6;
50 Dice dice = new Dice(SIDES);
51 dice.countInputs();
52 dice.printcounters();
53 }
54 }

Program Run

Please enter values, Q to quit:
1 2 3 1 2 3 4 Q
1: 2
2: 2
3: 2
4: 1
5: 0
6: 0

A World Population Table   WE5

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

Step 1	 First, we break down the task into steps:

Initialize the table data.
Print the table.
Compute and print the column totals.

Step 2	 Initialize the table as a sequence of rows:

int[][] populations =
 {
 { 106, 107, 111, 133, 221, 767, 1766 },
 { 502, 635, 809, 947, 1402, 3634, 5268 },
 { 2, 2, 2, 6, 13, 30, 46 },
 { 163, 203, 276, 408, 547, 729, 628 },
 { 2, 7, 26, 82, 172, 307, 392 },
 { 16, 24, 38, 74, 167, 511, 809 }
 };

Step 3	 To print the row headers, we also need a one-dimensional array of the continent names. Note
that it has the same number of rows as our table.

String[] continents =
 {
 "Africa",
 "Asia",
 "Australia",
 "Europe",
 "North America",
 "South America"
 };

© Tom Horyn/iStockphoto.

Worked Example 7.2	 A World Population Table

Problem Statement  You are to print the following population data in tabular format and
add column totals that show the total world population in the given years.

Population Per Continent (in millions)

Year 1750 1800 1850 1900 1950 2000 2050

Africa 106 107 111 133 221 767 1766

Asia 502 635 809 947 1402 3634 5268

Australia 2 2 2 6 13 30 46

Europe 163 203 276 408 547 729 628

North America 2 7 26 82 172 307 392

South America 16 24 38 74 167 511 809

© Alex Slobodkin/iStockphoto.

WE6  Chapter 7  Arrays and Array Lists

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

To print a row, we first print the continent name, then all columns. This is achieved with two
nested loops. The outer loop prints each row:

// Print population data
for (int i = 0; i < ROWS; i++)
{
 // Print the ith row
 . . .
 System.out.println(); // Start a new line at the end of the row
}

To print a row, we first print the row header, then all columns:

System.out.printf("%20s", continents[i]);
for (int j = 0; j < COLUMNS; j++)
{
 System.out.printf("%5d", populations[i][j]);
}

Step 4	 To print the column sums, we use the algorithm that was described in Section 7.6.4. We carry
out that computation once for each column.

for (int j = 0; j < COLUMNS; j++)
{
 int total = 0;
 for (int i = 0; i < ROWS; i++)
 {
 total = total + populations[i][j];
 }
 System.out.printf("%5d", total);
}

Here is the complete program:

worked_example_2/WorldPopulation.java

1 /**
2 This program prints a table showing the world population growth over 300 years.
3 */
4 public class WorldPopulation
5 {
6 public static void main(String[] args)
7 {
8 final int ROWS = 6;
9 final int COLUMNS = 7;

10
11 int[][] populations =
12 {
13 { 106, 107, 111, 133, 221, 767, 1766 },
14 { 502, 635, 809, 947, 1402, 3634, 5268 },
15 { 2, 2, 2, 6, 13, 30, 46 },
16 { 163, 203, 276, 408, 547, 729, 628 },
17 { 2, 7, 26, 82, 172, 307, 392 },
18 { 16, 24, 38, 74, 167, 511, 809 }
19 };
20
21 String[] continents =
22 {
23 "Africa",
24 "Asia",
25 "Australia",
26 "Europe",

A World Population Table   WE7

Big Java, 6e, Cay Horstmann, Copyright © 2015 John Wiley and Sons, Inc. All rights reserved.

27 "North America",
28 "South America"
29 };
30
31 System.out.println(" Year 1750 1800 1850 1900 1950 2000 2050");
32
33 // Print population data
34
35 for (int i = 0; i < ROWS; i++)
36 {
37 // Print the ith row
38 System.out.printf("%20s", continents[i]);
39 for (int j = 0; j < COLUMNS; j++)
40 {
41 System.out.printf("%5d", populations[i][j]);
42 }
43 System.out.println(); // Start a new line at the end of the row
44 }
45
46 // Print column totals
47
48 System.out.print(" World");
49 for (int j = 0; j < COLUMNS; j++)
50 {
51 int total = 0;
52 for (int i = 0; i < ROWS; i++)
53 {
54 total = total + populations[i][j];
55 }
56 System.out.printf("%5d", total);
57 }
58 System.out.println();
59 }
60 }

Program Run

 Year 1750 1800 1850 1900 1950 2000 2050
 Africa 106 107 111 133 221 767 1766
 Asia 502 635 809 947 1402 3634 5268
 Australia 2 2 2 6 13 30 46
 Europe 163 203 276 408 547 729 628
 North America 2 7 26 82 172 307 392
 South America 16 24 38 74 167 511 809
 World 791 978 1262 1650 2522 5978 8909

	Cover
	Title Page
	Copyright
	Preface
	Contents
	Chapter 1 Introduction
	1.1 Computer Programs
	1.2 The Anatomy of a Computer
	1.3 The Java Programming Language
	1.4 Becoming Familiar with Your Programming Environment
	1.5 Analyzing Your First Program
	1.6 Errors
	1.7 Problem Solving: Algorithm Design

	Chapter 2 Using Objects
	2.1 Objects and Classes
	2.2 Variables
	2.3 Calling Methods
	2.4 Constructing Objects
	2.5 Accessor and Mutator Methods
	2.6 The API Documentation
	2.7 Implementing a Test Program
	2.8 Object References
	2.9 Graphical Applications
	2.10 Ellipses, Lines, Text, and Color

	Chapter 3 Implementing Classes
	3.1 Instance Variables and Encapsulation
	3.2 Specifying the Public Interface of a Class
	3.3 Providing the Class Implementation
	3.4 Unit Testing
	3.5 Problem Solving: Tracing Objects
	3.6 Local Variables
	3.7 The this Reference
	3.8 Shape Classes

	Chapter 4 Fundamental Data Types
	4.1 Numbers
	4.2 Arithmetic
	4.3 Input and Output
	4.4 Problem Solving: First Do It By Hand
	4.5 Strings

	Chapter 5 Decisions
	5.1 The if Statement
	5.2 Comparing Values
	5.3 Multiple Alternatives
	5.4 Nested Branches
	5.5 Problem Solving: Flowcharts
	5.6 Problem Solving: Selecting Test Cases
	5.7 Boolean Variables and Operators
	5.8 Application: Input Validation

	Chapter 6 Loops
	6.1 The while Loop
	6.2 Problem Solving: Hand-Tracing
	6.3 The for Loop
	6.4 The do Loop
	6.5 Application: Processing Sentinel Values
	6.6 Problem Solving: Storyboards
	6.7 Common Loop Algorithms
	6.8 Nested Loops
	6.9 Application: Random Numbers and Simulations
	6.10 Using a Debugger

	Chapter 7 Arrays and Array Lists
	7.1 Arrays
	7.2 The Enhanced for Loop
	7.3 Common Array Algorithms
	7.4 Problem Solving: Adapting Algorithms
	7.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects
	7.6 Two-Dimensional Arrays
	7.7 Array Lists
	7.8 Regression Testing

